import gradio as gr from torchvision import transforms import torch import torch.nn as nn device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) class ResidualBlock(nn.Module): def __init__(self, channels): super(ResidualBlock, self).__init__() self.block = nn.Sequential( nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1, bias=False), nn.InstanceNorm2d(channels), nn.ReLU(inplace=True), nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1, bias=False), nn.InstanceNorm2d(channels) ) def forward(self, x): return x + self.block(x) # 強化版生成器:利用下採樣、殘差塊和上採樣結構 class StrongGenerator(nn.Module): def __init__(self, num_residual_blocks=6): super(StrongGenerator, self).__init__() # 初始卷積層 model = [ nn.Conv2d(3, 64, kernel_size=7, stride=1, padding=3, bias=False), nn.InstanceNorm2d(64), nn.ReLU(inplace=True) ] # 下採樣:連續兩次卷積降維 in_channels = 64 for _ in range(2): out_channels = in_channels * 2 model += [ nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False), nn.InstanceNorm2d(out_channels), nn.ReLU(inplace=True) ] in_channels = out_channels # 多個殘差塊 for _ in range(num_residual_blocks): model += [ResidualBlock(in_channels)] # 上採樣:連續兩次反捲積提升解析度 for _ in range(2): out_channels = in_channels // 2 model += [ nn.ConvTranspose2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False), nn.InstanceNorm2d(out_channels), nn.ReLU(inplace=True) ] in_channels = out_channels # 輸出層 model += [ nn.Conv2d(in_channels, 3, kernel_size=7, stride=1, padding=3), nn.Tanh() ] self.model = nn.Sequential(*model) def forward(self, x): return self.model(x) generator = StrongGenerator().to(device) generator.load_state_dict(torch.load("./generator_epoch_100.pth", map_location=device)) generator.eval() def restore_image(mosaic_image): transform_in = transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)) ]) input_tensor = transform_in(mosaic_image).unsqueeze(0).to(device) with torch.no_grad(): restored_tensor = generator(input_tensor) restored_tensor = restored_tensor.squeeze(0).cpu() restored_tensor = (restored_tensor * 0.5 + 0.5).clamp(0, 1) restored_image = transforms.ToPILImage()(restored_tensor) return restored_image iface = gr.Interface( fn=restore_image, inputs=gr.Image(type="pil"), outputs="image", title="Dog Image Mosaic Restoration", description="上傳打碼後的狗狗圖像,模型將嘗試還原原始圖像。" ) iface.launch()