Bot3 / app.py
BedfordD's picture
Update app.py
8744183
import streamlit as st
from llama_index import VectorStoreIndex, ServiceContext, Document
from llama_index.llms import OpenAI
import openai
from llama_index import SimpleDirectoryReader
import pypdf
openai.api_key = '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'
st.header("Chat with the Streamlit docs πŸ’¬ πŸ“š")
if "messages" not in st.session_state.keys(): # Initialize the chat message history
st.session_state.messages = [
{"role": "assistant", "content": "Ask me a question about the decision by the UK Supreme Court in McDonald v Kensington"}
]
@st.cache_resource(show_spinner=False)
def load_data():
with st.spinner(text="Loading and indexing the Streamlit docs – hang tight! This should take 1-2 minutes."):
reader = SimpleDirectoryReader(input_dir="./data", recursive=True)
docs = reader.load_data()
service_context = ServiceContext.from_defaults(llm=OpenAI(model="gpt-3.5-turbo", temperature=0.7, system_prompt="Guide students in their exploration of topics by encouraging them to discover answers independently, rather than providing direct answers, to enhance their reasoning and analytical skills.\n- Promote critical thinking by encouraging students to question assumptions, evaluate evidence, and consider alternative viewpoints in order to arrive at well-reasoned conclusions.\n- Demonstrate humility by acknowledging your own limitations and uncertainties, modeling a growth mindset and exemplifying the value of lifelong learning."))
index = VectorStoreIndex.from_documents(docs, service_context=service_context)
return index
index = load_data()
chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True)
if prompt := st.chat_input("Your question"): # Prompt for user input and save to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
for message in st.session_state.messages: # Display the prior chat messages
with st.chat_message(message["role"]):
st.write(message["content"])
# If last message is not from assistant, generate a new response
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = chat_engine.chat(prompt)
st.write(response.response)
message = {"role": "assistant", "content": response.response}
st.session_state.messages.append(message) # Add response to message history