|
import streamlit as st |
|
from llama_index import VectorStoreIndex, ServiceContext, Document |
|
from llama_index.llms import OpenAI |
|
import openai |
|
from llama_index import SimpleDirectoryReader |
|
import pypdf |
|
|
|
openai.api_key = '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' |
|
st.header("Chat with the Streamlit docs π¬ π") |
|
|
|
if "messages" not in st.session_state.keys(): |
|
st.session_state.messages = [ |
|
{"role": "assistant", "content": "Ask me a question about the decision by the UK Supreme Court in McDonald v Kensington"} |
|
] |
|
|
|
@st.cache_resource(show_spinner=False) |
|
def load_data(): |
|
with st.spinner(text="Loading and indexing the Streamlit docs β hang tight! This should take 1-2 minutes."): |
|
reader = SimpleDirectoryReader(input_dir="./data", recursive=True) |
|
docs = reader.load_data() |
|
service_context = ServiceContext.from_defaults(llm=OpenAI(model="gpt-3.5-turbo", temperature=0.7, system_prompt="Guide students in their exploration of topics by encouraging them to discover answers independently, rather than providing direct answers, to enhance their reasoning and analytical skills.\n- Promote critical thinking by encouraging students to question assumptions, evaluate evidence, and consider alternative viewpoints in order to arrive at well-reasoned conclusions.\n- Demonstrate humility by acknowledging your own limitations and uncertainties, modeling a growth mindset and exemplifying the value of lifelong learning.")) |
|
index = VectorStoreIndex.from_documents(docs, service_context=service_context) |
|
return index |
|
|
|
index = load_data() |
|
|
|
chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True) |
|
|
|
if prompt := st.chat_input("Your question"): |
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.write(message["content"]) |
|
|
|
|
|
if st.session_state.messages[-1]["role"] != "assistant": |
|
with st.chat_message("assistant"): |
|
with st.spinner("Thinking..."): |
|
response = chat_engine.chat(prompt) |
|
st.write(response.response) |
|
message = {"role": "assistant", "content": response.response} |
|
st.session_state.messages.append(message) |