Beehzod commited on
Commit
7bfb172
·
verified ·
1 Parent(s): 0b575c2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +79 -23
app.py CHANGED
@@ -1,34 +1,90 @@
1
  import streamlit as st
2
- import soundfile as sf
3
- from transformers import pipeline
4
- import io
 
 
 
5
 
6
- # Load the model
7
- #pipe = pipeline("automatic-speech-recognition", model="facebook/seamless-m4t-v2-large")
 
8
 
9
- from transformers import AutoTokenizer
 
10
 
11
- # Load the correct tokenizer for the model
12
- tokenizer = AutoTokenizer.from_pretrained("facebook/seamless-m4t-v2-large")
 
 
 
 
 
13
 
14
- # Initialize the pipeline
15
- pipe = pipeline("automatic-speech-recognition", model="facebook/seamless-m4t-v2-large", tokenizer=tokenizer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
 
 
 
 
 
 
17
 
18
- # Streamlit title and instructions
19
- st.title("Real-Time Speech Recognition")
20
- st.write("Click the button below to start recording and transcribe the audio.")
 
 
21
 
22
- # Audio recording
23
- audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"])
 
 
24
 
25
- if audio_file is not None:
26
- # Read the audio file and transcribe
27
- audio_bytes = audio_file.read()
28
- audio_data, samplerate = sf.read(io.BytesIO(audio_bytes))
29
 
30
- # Run the transcription pipeline
31
- result = pipe(audio_data)
32
 
33
- # Display the transcription result
34
- st.write("Transcription: ", result['text'])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ from transformers import SeamlessM4Tv2Model, AutoProcessor
3
+ import torch
4
+ import numpy as np
5
+ from scipy.io.wavfile import write
6
+ import re
7
+ from io import BytesIO
8
 
9
+ # Load the processor and model
10
+ processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large")
11
+ model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large")
12
 
13
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
+ model.to(device)
15
 
16
+ # Number to words function for Uzbek
17
+ number_words = {
18
+ 0: "nol", 1: "bir", 2: "ikki", 3: "uch", 4: "to'rt", 5: "besh", 6: "olti", 7: "yetti", 8: "sakkiz", 9: "to'qqiz",
19
+ 10: "o'n", 11: "o'n bir", 12: "o'n ikki", 13: "o'n uch", 14: "o'n to'rt", 15: "o'n besh", 16: "o'n oltı", 17: "o'n yetti",
20
+ 18: "o'n sakkiz", 19: "o'n toqqiz", 20: "yigirma", 30: "o'ttiz", 40: "qirq", 50: "ellik", 60: "oltmish", 70: "yetmish",
21
+ 80: "sakson", 90: "to'qson", 100: "yuz", 1000: "ming", 1000000: "million"
22
+ }
23
 
24
+ def number_to_words(number):
25
+ if number < 20:
26
+ return number_words[number]
27
+ elif number < 100:
28
+ tens, unit = divmod(number, 10)
29
+ return number_words[tens * 10] + (" " + number_words[unit] if unit else "")
30
+ elif number < 1000:
31
+ hundreds, remainder = divmod(number, 100)
32
+ return (number_words[hundreds] + " yuz" if hundreds > 1 else "yuz") + (" " + number_to_words(remainder) if remainder else "")
33
+ elif number < 1000000:
34
+ thousands, remainder = divmod(number, 1000)
35
+ return (number_to_words(thousands) + " ming" if thousands > 1 else "ming") + (" " + number_to_words(remainder) if remainder else "")
36
+ elif number < 1000000000:
37
+ millions, remainder = divmod(number, 1000000)
38
+ return number_to_words(millions) + " million" + (" " + number_to_words(remainder) if remainder else "")
39
+ elif number < 1000000000000:
40
+ billions, remainder = divmod(number, 1000000000)
41
+ return number_to_words(billions) + " milliard" + (" " + number_to_words(remainder) if remainder else "")
42
+ else:
43
+ return str(number)
44
 
45
+ def replace_numbers_with_words(text):
46
+ def replace(match):
47
+ number = int(match.group())
48
+ return number_to_words(number)
49
+ result = re.sub(r'\b\d+\b', replace, text)
50
+ return result
51
 
52
+ # Replacements
53
+ replacements = [
54
+ ("bo‘ladi", "bo'ladi"),
55
+ ("yog‘ingarchilik", "yog'ingarchilik"),
56
+ ]
57
 
58
+ def cleanup_text(text):
59
+ for src, dst in replacements:
60
+ text = text.replace(src, dst)
61
+ return text
62
 
63
+ # Streamlit App
64
+ st.title("Text-to-Speech using Seamless M4T Model")
 
 
65
 
66
+ # User Input
67
+ user_input = st.text_area("Enter the text for speech generation", height=200)
68
 
69
+ # Process the text and generate speech
70
+ if st.button("Generate Speech"):
71
+ if user_input.strip():
72
+ # Apply text transformations
73
+ converted_text = replace_numbers_with_words(user_input)
74
+ cleaned_text = cleanup_text(converted_text)
75
+
76
+ # Process input for model
77
+ inputs = processor(text=cleaned_text, src_lang="uzn", return_tensors="pt").to(device)
78
+
79
+ # Generate audio from text
80
+ audio_array_from_text = model.generate(**inputs, tgt_lang="uzn")[0].cpu().numpy().squeeze()
81
+
82
+ # Save to BytesIO
83
+ audio_io = BytesIO()
84
+ write(audio_io, 16000, audio_array_from_text.astype(np.float32))
85
+ audio_io.seek(0)
86
+
87
+ # Provide audio for playback
88
+ st.audio(audio_io, format='audio/wav')
89
+ else:
90
+ st.warning("Please enter some text to generate speech.")