Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,90 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
from scipy.io.wavfile import write
|
6 |
-
import re
|
7 |
from io import BytesIO
|
8 |
|
9 |
-
# Load the
|
10 |
-
|
11 |
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large")
|
12 |
|
|
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
model.to(device)
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
return number_words[tens * 10] + (" " + number_words[unit] if unit else "")
|
30 |
-
elif number < 1000:
|
31 |
-
hundreds, remainder = divmod(number, 100)
|
32 |
-
return (number_words[hundreds] + " yuz" if hundreds > 1 else "yuz") + (" " + number_to_words(remainder) if remainder else "")
|
33 |
-
elif number < 1000000:
|
34 |
-
thousands, remainder = divmod(number, 1000)
|
35 |
-
return (number_to_words(thousands) + " ming" if thousands > 1 else "ming") + (" " + number_to_words(remainder) if remainder else "")
|
36 |
-
elif number < 1000000000:
|
37 |
-
millions, remainder = divmod(number, 1000000)
|
38 |
-
return number_to_words(millions) + " million" + (" " + number_to_words(remainder) if remainder else "")
|
39 |
-
elif number < 1000000000000:
|
40 |
-
billions, remainder = divmod(number, 1000000000)
|
41 |
-
return number_to_words(billions) + " milliard" + (" " + number_to_words(remainder) if remainder else "")
|
42 |
-
else:
|
43 |
-
return str(number)
|
44 |
-
|
45 |
-
def replace_numbers_with_words(text):
|
46 |
-
def replace(match):
|
47 |
-
number = int(match.group())
|
48 |
-
return number_to_words(number)
|
49 |
-
result = re.sub(r'\b\d+\b', replace, text)
|
50 |
-
return result
|
51 |
-
|
52 |
-
# Replacements
|
53 |
-
replacements = [
|
54 |
-
("bo‘ladi", "bo'ladi"),
|
55 |
-
("yog‘ingarchilik", "yog'ingarchilik"),
|
56 |
-
]
|
57 |
-
|
58 |
-
def cleanup_text(text):
|
59 |
-
for src, dst in replacements:
|
60 |
-
text = text.replace(src, dst)
|
61 |
-
return text
|
62 |
-
|
63 |
-
# Streamlit App
|
64 |
-
st.title("Text-to-Speech using Seamless M4T Model")
|
65 |
-
|
66 |
-
# User Input
|
67 |
-
user_input = st.text_area("Enter the text for speech generation", height=200)
|
68 |
-
|
69 |
-
# Process the text and generate speech
|
70 |
-
if st.button("Generate Speech"):
|
71 |
-
if user_input.strip():
|
72 |
-
# Apply text transformations
|
73 |
-
converted_text = replace_numbers_with_words(user_input)
|
74 |
-
cleaned_text = cleanup_text(converted_text)
|
75 |
-
|
76 |
-
# Process input for model
|
77 |
-
inputs = processor(text=cleaned_text, src_lang="uzn", return_tensors="pt").to(device)
|
78 |
-
|
79 |
-
# Generate audio from text
|
80 |
audio_array_from_text = model.generate(**inputs, tgt_lang="uzn")[0].cpu().numpy().squeeze()
|
81 |
|
82 |
-
# Save
|
83 |
-
|
84 |
-
write(
|
85 |
-
|
86 |
|
87 |
-
#
|
88 |
-
st.audio(
|
89 |
else:
|
90 |
-
st.warning("Please enter
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# from transformers import SeamlessM4Tv2Model, AutoProcessor
|
3 |
+
# import torch
|
4 |
+
# import numpy as np
|
5 |
+
# from scipy.io.wavfile import write
|
6 |
+
# import re
|
7 |
+
# from io import BytesIO
|
8 |
+
|
9 |
+
# # Load the processor and model
|
10 |
+
# processor = AutoProcessor.from_pretrained("facebook/seamless-m4t-v2-large")
|
11 |
+
# model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large")
|
12 |
+
|
13 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
# model.to(device)
|
15 |
+
|
16 |
+
# # Number to words function for Uzbek
|
17 |
+
# number_words = {
|
18 |
+
# 0: "nol", 1: "bir", 2: "ikki", 3: "uch", 4: "to'rt", 5: "besh", 6: "olti", 7: "yetti", 8: "sakkiz", 9: "to'qqiz",
|
19 |
+
# 10: "o'n", 11: "o'n bir", 12: "o'n ikki", 13: "o'n uch", 14: "o'n to'rt", 15: "o'n besh", 16: "o'n oltı", 17: "o'n yetti",
|
20 |
+
# 18: "o'n sakkiz", 19: "o'n toqqiz", 20: "yigirma", 30: "o'ttiz", 40: "qirq", 50: "ellik", 60: "oltmish", 70: "yetmish",
|
21 |
+
# 80: "sakson", 90: "to'qson", 100: "yuz", 1000: "ming", 1000000: "million"
|
22 |
+
# }
|
23 |
+
|
24 |
+
# def number_to_words(number):
|
25 |
+
# if number < 20:
|
26 |
+
# return number_words[number]
|
27 |
+
# elif number < 100:
|
28 |
+
# tens, unit = divmod(number, 10)
|
29 |
+
# return number_words[tens * 10] + (" " + number_words[unit] if unit else "")
|
30 |
+
# elif number < 1000:
|
31 |
+
# hundreds, remainder = divmod(number, 100)
|
32 |
+
# return (number_words[hundreds] + " yuz" if hundreds > 1 else "yuz") + (" " + number_to_words(remainder) if remainder else "")
|
33 |
+
# elif number < 1000000:
|
34 |
+
# thousands, remainder = divmod(number, 1000)
|
35 |
+
# return (number_to_words(thousands) + " ming" if thousands > 1 else "ming") + (" " + number_to_words(remainder) if remainder else "")
|
36 |
+
# elif number < 1000000000:
|
37 |
+
# millions, remainder = divmod(number, 1000000)
|
38 |
+
# return number_to_words(millions) + " million" + (" " + number_to_words(remainder) if remainder else "")
|
39 |
+
# elif number < 1000000000000:
|
40 |
+
# billions, remainder = divmod(number, 1000000000)
|
41 |
+
# return number_to_words(billions) + " milliard" + (" " + number_to_words(remainder) if remainder else "")
|
42 |
+
# else:
|
43 |
+
# return str(number)
|
44 |
+
|
45 |
+
# def replace_numbers_with_words(text):
|
46 |
+
# def replace(match):
|
47 |
+
# number = int(match.group())
|
48 |
+
# return number_to_words(number)
|
49 |
+
# result = re.sub(r'\b\d+\b', replace, text)
|
50 |
+
# return result
|
51 |
+
|
52 |
+
# # Replacements
|
53 |
+
# replacements = [
|
54 |
+
# ("bo‘ladi", "bo'ladi"),
|
55 |
+
# ("yog‘ingarchilik", "yog'ingarchilik"),
|
56 |
+
# ]
|
57 |
+
|
58 |
+
# def cleanup_text(text):
|
59 |
+
# for src, dst in replacements:
|
60 |
+
# text = text.replace(src, dst)
|
61 |
+
# return text
|
62 |
+
|
63 |
+
# # Streamlit App
|
64 |
+
# st.title("Text-to-Speech using Seamless M4T Model")
|
65 |
+
|
66 |
+
# # User Input
|
67 |
+
# user_input = st.text_area("Enter the text for speech generation", height=200)
|
68 |
+
|
69 |
+
# # Process the text and generate speech
|
70 |
+
# if st.button("Generate Speech"):
|
71 |
+
# if user_input.strip():
|
72 |
+
# # Apply text transformations
|
73 |
+
# converted_text = replace_numbers_with_words(user_input)
|
74 |
+
# cleaned_text = cleanup_text(converted_text)
|
75 |
+
|
76 |
+
# # Process input for model
|
77 |
+
# inputs = processor(text=cleaned_text, src_lang="uzn", return_tensors="pt").to(device)
|
78 |
+
|
79 |
+
# # Generate audio from text
|
80 |
+
# audio_array_from_text = model.generate(**inputs, tgt_lang="uzn")[0].cpu().numpy().squeeze()
|
81 |
+
|
82 |
+
# # Save to BytesIO
|
83 |
+
# audio_io = BytesIO()
|
84 |
+
# write(audio_io, 16000, audio_array_from_text.astype(np.float32))
|
85 |
+
# audio_io.seek(0)
|
86 |
+
|
87 |
+
# # Provide audio for playback
|
88 |
+
# st.audio(audio_io, format='audio/wav')
|
89 |
+
# else:
|
90 |
+
# st.warning("Please enter some text to generate speech.")
|
91 |
import streamlit as st
|
92 |
+
from transformers import SeamlessM4TTokenizer, SeamlessM4Tv2Model
|
93 |
import torch
|
94 |
import numpy as np
|
95 |
from scipy.io.wavfile import write
|
|
|
96 |
from io import BytesIO
|
97 |
|
98 |
+
# Load the tokenizer and model
|
99 |
+
tokenizer = SeamlessM4TTokenizer.from_pretrained("facebook/seamless-m4t-v2-large")
|
100 |
model = SeamlessM4Tv2Model.from_pretrained("facebook/seamless-m4t-v2-large")
|
101 |
|
102 |
+
# Set the device (CUDA if available, else CPU)
|
103 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
104 |
model.to(device)
|
105 |
|
106 |
+
# Streamlit title
|
107 |
+
st.title("Text-to-Speech with Seamless M4T Model")
|
108 |
+
|
109 |
+
# Input text field
|
110 |
+
text = st.text_area("Enter text for audio generation", "Nutq texnologiyasining til qamrovini kengaytirish...")
|
111 |
+
|
112 |
+
# Button to generate audio
|
113 |
+
if st.button("Generate Audio"):
|
114 |
+
if text:
|
115 |
+
# Preprocess the text and convert to tensor
|
116 |
+
inputs = tokenizer(text=text, src_lang="uzn", return_tensors="pt").to(device)
|
117 |
+
|
118 |
+
# Generate audio from the model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
audio_array_from_text = model.generate(**inputs, tgt_lang="uzn")[0].cpu().numpy().squeeze()
|
120 |
|
121 |
+
# Save the audio as a .wav file in memory
|
122 |
+
audio_file = BytesIO()
|
123 |
+
write(audio_file, 16000, audio_array_from_text.astype(np.float32))
|
124 |
+
audio_file.seek(0) # Reset the pointer to the start of the file
|
125 |
|
126 |
+
# Display the audio player in the Streamlit app
|
127 |
+
st.audio(audio_file, format="audio/wav")
|
128 |
else:
|
129 |
+
st.warning("Please enter text to generate audio.")
|