Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ if torch.cuda.is_available():
|
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
14 |
tokenizer.use_default_system_prompt = False
|
15 |
|
16 |
-
|
17 |
def respond(
|
18 |
message,
|
19 |
history: list[tuple[str, str]],
|
@@ -45,6 +45,50 @@ def respond(
|
|
45 |
response += token
|
46 |
yield response
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
demo = gr.ChatInterface(
|
50 |
respond,
|
|
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
14 |
tokenizer.use_default_system_prompt = False
|
15 |
|
16 |
+
#Inference API Code
|
17 |
def respond(
|
18 |
message,
|
19 |
history: list[tuple[str, str]],
|
|
|
45 |
response += token
|
46 |
yield response
|
47 |
|
48 |
+
#Transformers Code
|
49 |
+
@spaces.GPU
|
50 |
+
def generate(
|
51 |
+
message: str,
|
52 |
+
chat_history: list[tuple[str, str]],
|
53 |
+
system_prompt: str,
|
54 |
+
max_new_tokens: int = 1024,
|
55 |
+
temperature: float = 0.6,
|
56 |
+
top_p: float = 0.9,
|
57 |
+
top_k: int = 50,
|
58 |
+
repetition_penalty: float = 1.2,
|
59 |
+
) -> Iterator[str]:
|
60 |
+
conversation = []
|
61 |
+
if system_prompt:
|
62 |
+
conversation.append({"role": "system", "content": system_prompt})
|
63 |
+
for user, assistant in chat_history:
|
64 |
+
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
65 |
+
conversation.append({"role": "user", "content": message})
|
66 |
+
|
67 |
+
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
|
68 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
69 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
70 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
71 |
+
input_ids = input_ids.to(model.device)
|
72 |
+
|
73 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
74 |
+
generate_kwargs = dict(
|
75 |
+
{"input_ids": input_ids},
|
76 |
+
streamer=streamer,
|
77 |
+
max_new_tokens=max_new_tokens,
|
78 |
+
do_sample=True,
|
79 |
+
top_p=top_p,
|
80 |
+
top_k=top_k,
|
81 |
+
temperature=temperature,
|
82 |
+
num_beams=1,
|
83 |
+
repetition_penalty=repetition_penalty,
|
84 |
+
)
|
85 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
86 |
+
t.start()
|
87 |
+
|
88 |
+
outputs = []
|
89 |
+
for text in streamer:
|
90 |
+
outputs.append(text)
|
91 |
+
yield "".join(outputs)
|
92 |
|
93 |
demo = gr.ChatInterface(
|
94 |
respond,
|