File size: 14,184 Bytes
68f974c
a9830ef
6d02f81
 
a9830ef
 
6d02f81
 
 
38d21b1
6d02f81
 
b4c63ea
44d690a
6d02f81
 
 
 
 
38d21b1
 
6d02f81
 
68f974c
6d02f81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44d690a
7e93159
 
44d690a
9b68ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d02f81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b68ec8
6d02f81
9b68ec8
6d02f81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38d21b1
6d02f81
 
 
51b1272
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

import subprocess
import sys
import os

from transformers import TextIteratorStreamer
import argparse
import time
import subprocess
import spaces
import cumo.serve.gradio_web_server as gws

from transformers import AutoProcessor,AutoTokenizer, AutoImageProcessor

import datetime
import json

import gradio as gr
import requests
from PIL import Image

from cumo.conversation import (default_conversation, conv_templates, SeparatorStyle)
from cumo.constants import LOGDIR
from cumo.model.language_model.llava_mistral import LlavaMistralForCausalLM
from cumo.utils import (build_logger, server_error_msg, violates_moderation, moderation_msg)
import hashlib

import torch
import io
from cumo.constants import WORKER_HEART_BEAT_INTERVAL
from cumo.utils import (build_logger, server_error_msg,
    pretty_print_semaphore)
from cumo.model.builder import load_pretrained_model
from cumo.mm_utils import process_images, load_image_from_base64, tokenizer_image_token
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from transformers import TextIteratorStreamer
from threading import Thread

# Execute the pip install command with additional options
#subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'flash-attn', '--no-build-isolation', '-U']

headers = {"User-Agent": "CuMo"}

no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)

device = "cuda" if torch.cuda.is_available() else "cpu"
model_path = 'BenkHel/CumoThesis'
conv_mode = 'mistral_instruct_system' # Diese Variable wird noch für die Konversationstemplates benötigt
load_8bit = False
load_4bit = False

import sys
import os
import argparse
import time
import subprocess
import spaces
import cumo.serve.gradio_web_server as gws

import datetime
import json

import gradio as gr
import requests
from PIL import Image

from cumo.conversation import (default_conversation, conv_templates, SeparatorStyle)
from cumo.constants import LOGDIR
from cumo.utils import (build_logger, server_error_msg, violates_moderation, moderation_msg)
import hashlib

import torch
import io
from cumo.constants import WORKER_HEART_BEAT_INTERVAL
from cumo.utils import (build_logger, server_error_msg,
    pretty_print_semaphore)
from cumo.model.builder import load_pretrained_model
from cumo.mm_utils import process_images, load_image_from_base64, tokenizer_image_token
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from transformers import TextIteratorStreamer
from threading import Thread

# Execute the pip install command with additional options
#subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'flash-attn', '--no-build-isolation', '-U']

headers = {"User-Agent": "CuMo"}

no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)

device = "cuda" if torch.cuda.is_available() else "cpu"
model_path = 'BenkHel/CumoThesis'
model_base = 'mistralai/Mistral-7B-Instruct-v0.2'
model_name = 'CuMo-mistral-7b'
conv_mode = 'mistral_instruct_system'
load_8bit = False
load_4bit = False
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, model_base, model_name, load_8bit, load_4bit, device=device, use_flash_attn=False)
model.config.training = False
             
def upvote_last_response(state):
    return ("",) + (disable_btn,) * 3


def downvote_last_response(state):
    return ("",) + (disable_btn,) * 3


def flag_last_response(state):
    return ("",) + (disable_btn,) * 3

def clear_history():
    state = default_conversation.copy()
    return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5

def add_text(state, imagebox, textbox, image_process_mode):
    if state is None:
        state = conv_templates[conv_mode].copy()

    if imagebox is not None:
        textbox = DEFAULT_IMAGE_TOKEN + '\n' + textbox
        image = Image.open(imagebox).convert('RGB')

    if imagebox is not None:
        textbox = (textbox, image, image_process_mode)

    state.append_message(state.roles[0], textbox)
    state.append_message(state.roles[1], None)

    yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)

def delete_text(state, image_process_mode):
    state.messages[-1][-1] = None
    prev_human_msg = state.messages[-2]
    if type(prev_human_msg[1]) in (tuple, list):
        prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
    yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)

def regenerate(state, image_process_mode):
    state.messages[-1][-1] = None
    prev_human_msg = state.messages[-2]
    if type(prev_human_msg[1]) in (tuple, list):
        prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5

@spaces.GPU
def generate(state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens):
    prompt = state.get_prompt()
    images = state.get_images(return_pil=True)
    #prompt, image_args = process_image(prompt, images)

    ori_prompt = prompt
    num_image_tokens = 0

    if images is not None and len(images) > 0:
        if len(images) > 0:
            if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
                raise ValueError("Number of images does not match number of <image> tokens in prompt")
            
            #images = [load_image_from_base64(image) for image in images]
            image_sizes = [image.size for image in images]
            images = process_images(images, image_processor, model.config)

            if type(images) is list:
                images = [image.to(model.device, dtype=torch.float16) for image in images]
            else:
                images = images.to(model.device, dtype=torch.float16)

            replace_token = DEFAULT_IMAGE_TOKEN
            if getattr(model.config, 'mm_use_im_start_end', False):
                replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
            prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)

            num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches
        else:
            images = None
            image_sizes = None
        image_args = {"images": images, "image_sizes": image_sizes}
    else:
        images = None
        image_args = {}

    max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
    max_new_tokens = 512
    do_sample = True if temperature > 0.001 else False
    stop_str = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2

    input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
    streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)

    max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)

    if max_new_tokens < 1:
        yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
        return

    thread = Thread(target=model.generate, kwargs=dict(
        inputs=input_ids,
        do_sample=do_sample,
        temperature=temperature,
        top_p=top_p,
        max_new_tokens=max_new_tokens,
        streamer=streamer,
        use_cache=True,
        pad_token_id=tokenizer.eos_token_id,
        **image_args
    ))
    thread.start()
    generated_text = ''
    for new_text in streamer:
        generated_text += new_text
        if generated_text.endswith(stop_str):
            generated_text = generated_text[:-len(stop_str)]
        state.messages[-1][-1] = generated_text
        yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
    
    yield (state, state.to_gradio_chatbot(), "", None) + (enable_btn,) * 5
    
    torch.cuda.empty_cache()

title_markdown = ("""
# CuMo: Scaling Multimodal LLM with Co-Upcycled Mixture-of-Experts
[[Project Page](https://chrisjuniorli.github.io/project/CuMo/)] [[Code](https://github.com/SHI-Labs/CuMo)] [[Model](https://huggingface.co/shi-labs/CuMo-mistral-7b)] | 📚 [[Arxiv](https://arxiv.org/pdf/2405.05949)]]
""")

tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")


learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the. Please contact us if you find any potential violation.
""")

block_css = """
#buttons button {
    min-width: min(120px,100%);
}
"""

textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
with gr.Blocks(title="CuMo", theme=gr.themes.Default(), css=block_css) as demo:
    state = gr.State()

    gr.Markdown(title_markdown)

    with gr.Row():
        with gr.Column(scale=3):
            imagebox = gr.Image(label="Input Image", type="filepath")
            image_process_mode = gr.Radio(
                ["Crop", "Resize", "Pad", "Default"],
                value="Default",
                label="Preprocess for non-square image", visible=False)

    
            #cur_dir = os.path.dirname(os.path.abspath(__file__))
            cur_dir = './cumo/serve'
            gr.Examples(examples=[
                [f"{cur_dir}/examples/aveger.jpg", "Can you introduce this movie based on the poster?"],
                [f"{cur_dir}/examples/fridge.webp", "Can you describe what groceries are presented in this fridge?"],
                [f"{cur_dir}/examples/su7_4.jpg", "What car is it in this image?"],
                [f"{cur_dir}/examples/nvidia.jpeg", "Can you tell me what happened in this image?"],
                [f"{cur_dir}/examples/animal.webp", "What animals are in this image?"],
                [f"{cur_dir}/examples/disney.jpeg", "How many characters in this image?"],
                [f"{cur_dir}/examples/reka_6.jpeg", "What colour is my hat (im sitting on the bear)?"],
            ], inputs=[imagebox, textbox], cache_examples=False)

            with gr.Accordion("Parameters", open=False) as parameter_row:
                temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
                top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
                max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)

        with gr.Column(scale=8):
            chatbot = gr.Chatbot(
                elem_id="chatbot",
                label="CuMo Chatbot",
                height=650,
                layout="panel",
            )
            with gr.Row():
                with gr.Column(scale=8):
                    textbox.render()
                with gr.Column(scale=1, min_width=50):
                    submit_btn = gr.Button(value="Send", variant="primary")
            with gr.Row(elem_id="buttons") as button_row:
                upvote_btn = gr.Button(value="👍  Upvote", interactive=False)
                downvote_btn = gr.Button(value="👎  Downvote", interactive=False)
                flag_btn = gr.Button(value="⚠️  Flag", interactive=False)
                #stop_btn = gr.Button(value="⏹️  Stop Generation", interactive=False)
                regenerate_btn = gr.Button(value="🔄  Regenerate", interactive=False)
                clear_btn = gr.Button(value="🗑️  Clear", interactive=False)

    gr.Markdown(tos_markdown)
    gr.Markdown(learn_more_markdown)
    url_params = gr.JSON(visible=False)

    # Register listeners
    btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
    upvote_btn.click(
        upvote_last_response,
        [state],
        [textbox, upvote_btn, downvote_btn, flag_btn]
    )
    downvote_btn.click(
        downvote_last_response,
        [state],
        [textbox, upvote_btn, downvote_btn, flag_btn]
    )
    flag_btn.click(
        flag_last_response,
        [state],
        [textbox, upvote_btn, downvote_btn, flag_btn]
    )

    clear_btn.click(
        clear_history,
        None,
        [state, chatbot, textbox, imagebox] + btn_list,
        queue=False
    )

    regenerate_btn.click(
        delete_text,
        [state, image_process_mode],
        [state, chatbot, textbox, imagebox] + btn_list,
    ).then(
        generate,
        [state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
        [state, chatbot, textbox, imagebox] + btn_list,
    )
    textbox.submit(
        add_text,
        [state, imagebox, textbox, image_process_mode],
        [state, chatbot, textbox, imagebox] + btn_list,
    ).then(
        generate,
        [state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
        [state, chatbot, textbox, imagebox] + btn_list,
    )

    submit_btn.click(
        add_text,
        [state, imagebox, textbox, image_process_mode],
        [state, chatbot, textbox, imagebox] + btn_list,
    ).then(
        generate,
        [state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
        [state, chatbot, textbox, imagebox] + btn_list,
    )

demo.queue(
    status_update_rate=10,
    api_open=False
).launch()