Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,818 Bytes
5dad961 761ef8c 5dad961 761ef8c 5dad961 761ef8c 5dad961 761ef8c 5dad961 761ef8c 5dad961 761ef8c 5dad961 090efb5 5dad961 090efb5 5dad961 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import subprocess
import sys
import os
from transformers import TextIteratorStreamer
import argparse
import time
import subprocess
import spaces
import cumo.serve.gradio_web_server as gws
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor
import datetime
import json
import gradio as gr
import requests
from PIL import Image
from cumo.conversation import (default_conversation, conv_templates, SeparatorStyle)
from cumo.constants import LOGDIR
from cumo.model.language_model.llava_mistral import LlavaMistralForCausalLM
from cumo.utils import (build_logger, server_error_msg, violates_moderation, moderation_msg)
import hashlib
import torch
import io
from cumo.constants import WORKER_HEART_BEAT_INTERVAL
from cumo.utils import (build_logger, server_error_msg,
pretty_print_semaphore)
from cumo.model.builder import load_pretrained_model
from cumo.mm_utils import process_images, load_image_from_base64, tokenizer_image_token
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from transformers import TextIteratorStreamer
from threading import Thread
headers = {"User-Agent": "CuMo"}
no_change_btn = gr.Button()
enable_btn = gr.Button(interactive=True)
disable_btn = gr.Button(interactive=False)
device = "cuda" if torch.cuda.is_available() else "cpu"
model_path = 'BenkHel/CumoThesis'
model_base = 'mistralai/Mistral-7B-Instruct-v0.2'
model_name = 'CuMo-mistral-7b'
conv_mode = 'mistral_instruct_system'
load_8bit = False
load_4bit = False
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path, model_base, model_name, load_8bit, load_4bit, device=device, use_flash_attn=False
)
model.config.training = False
# FIXED PROMPT
FIXED_PROMPT = "<image>\nWhat type of waste is this item and how to dispose of it?"
def clear_history():
state = default_conversation.copy()
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def add_text(state, imagebox, textbox, image_process_mode):
if state is None:
state = conv_templates[conv_mode].copy()
if imagebox is not None:
textbox = FIXED_PROMPT
image = Image.open(imagebox).convert('RGB')
textbox = (textbox, image, image_process_mode)
state.append_message(state.roles[0], textbox)
state.append_message(state.roles[1], None)
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
def delete_text(state, image_process_mode):
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
def regenerate(state, image_process_mode):
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
@spaces.GPU
def generate(state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens):
prompt = FIXED_PROMPT
images = state.get_images(return_pil=True)
ori_prompt = prompt
num_image_tokens = 0
if images is not None and len(images) > 0:
if len(images) > 0:
if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
raise ValueError("Number of images does not match number of <image> tokens in prompt")
image_sizes = [image.size for image in images]
images = process_images(images, image_processor, model.config)
if type(images) is list:
images = [image.to(model.device, dtype=torch.float16) for image in images]
else:
images = images.to(model.device, dtype=torch.float16)
replace_token = DEFAULT_IMAGE_TOKEN
if getattr(model.config, 'mm_use_im_start_end', False):
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches
else:
images = None
image_sizes = None
image_args = {"images": images, "image_sizes": image_sizes}
else:
images = None
image_args = {}
max_context_length = getattr(model.config, 'max_position_embeddings', 2048)
max_new_tokens = 512
do_sample = True if temperature > 0.001 else False
stop_str = state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)
max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens)
if max_new_tokens < 1:
yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
return
thread = Thread(target=model.generate, kwargs=dict(
inputs=input_ids,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
max_new_tokens=max_new_tokens,
streamer=streamer,
use_cache=True,
pad_token_id=tokenizer.eos_token_id,
**image_args
))
thread.start()
generated_text = ''
for new_text in streamer:
generated_text += new_text
if generated_text.endswith(stop_str):
generated_text = generated_text[:-len(stop_str)]
state.messages[-1][-1] = generated_text
yield (state, state.to_gradio_chatbot(), "", None) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
yield (state, state.to_gradio_chatbot(), "", None) + (enable_btn,) * 5
torch.cuda.empty_cache()
title_markdown = ("""
# CuMo: Trained for waste management
""")
tos_markdown = ("""
### Source and Terms of use
This demo is based on the original CuMo project by SHI-Labs ([GitHub](https://github.com/SHI-Labs/CuMo)).
If you use this service or build upon this work, please cite the original publication:
Li, Jiachen and Wang, Xinyao and Zhu, Sijie and Kuo, Chia-wen and Xu, Lu and Chen, Fan and Jain, Jitesh and Shi, Humphrey and Wen, Longyin.
CuMo: Scaling Multimodal LLM with Co-Upcycled Mixture-of-Experts. arXiv preprint, 2024.
[[arXiv](https://arxiv.org/abs/2405.05949)]
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the. Please contact us if you find any potential violation.
""")
block_css = """
#buttons button {
min-width: min(120px,100%);
}
"""
textbox = gr.Textbox(
show_label=False,
placeholder="Prompt is fixed: What type of waste is this item and how to dispose of it?",
container=False,
interactive=False
)
with gr.Blocks(title="CuMo", theme=gr.themes.Default(), css=block_css) as demo:
state = gr.State()
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=3):
imagebox = gr.Image(label="Input Image", type="filepath")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad", "Default"],
value="Default",
label="Preprocess for non-square image", visible=False)
#cur_dir = os.path.dirname(os.path.abspath(__file__))
cur_dir = './cumo/serve'
default_prompt = "<image>\nWhat type of waste is this item and how to dispose of it?"
gr.Examples(examples=[
[f"{cur_dir}/examples/0165 CB.jpg", default_prompt],
[f"{cur_dir}/examples/0225 PA.jpg", default_prompt],
[f"{cur_dir}/examples/0787 GM.jpg", default_prompt],
[f"{cur_dir}/examples/1396 A.jpg", default_prompt],
[f"{cur_dir}/examples/2001 P.jpg", default_prompt],
[f"{cur_dir}/examples/2658 PE.jpg", default_prompt],
[f"{cur_dir}/examples/3113 R.jpg", default_prompt],
[f"{cur_dir}/examples/3750 RPC.jpg", default_prompt],
[f"{cur_dir}/examples/5033 CC.jpg", default_prompt],
[f"{cur_dir}/examples/5307 B.jpg", default_prompt],
], inputs=[imagebox, textbox], cache_examples=False)
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
with gr.Column(scale=8):
chatbot = gr.Chatbot(
elem_id="chatbot",
label="CuMo Chatbot",
height=650,
layout="panel",
)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary")
with gr.Row(elem_id="buttons") as button_row:
clear_btn = gr.Button(value="⚠️ Please press here after every run ⚠️", interactive=False)
stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [regenerate_btn, clear_btn]
clear_btn.click(
clear_history,
None,
[state, chatbot, textbox, imagebox] + btn_list,
queue=False
)
regenerate_btn.click(
delete_text,
[state, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
textbox.submit(
add_text,
[state, imagebox, textbox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
submit_btn.click(
add_text,
[state, imagebox, textbox, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list,
).then(
generate,
[state, imagebox, textbox, image_process_mode, temperature, top_p, max_output_tokens],
[state, chatbot, textbox, imagebox] + btn_list,
)
demo.queue(
status_update_rate=10,
api_open=False
).launch() |