Spaces:
Running
on
Zero
Running
on
Zero
Upload 43 files
Browse files- cumo/__init__.py +4 -0
- cumo/constants.py +31 -0
- cumo/conversation.py +427 -0
- cumo/eval/calculate_score.py +266 -0
- cumo/eval/eval_gpt_review_bench.py +124 -0
- cumo/eval/eval_pope.py +86 -0
- cumo/eval/eval_science_qa.py +114 -0
- cumo/eval/eval_textvqa.py +65 -0
- cumo/eval/extract_answer.py +252 -0
- cumo/eval/m4c_evaluator.py +334 -0
- cumo/eval/main_eval_only.py +96 -0
- cumo/eval/mmmu_utils/data_utils.py +174 -0
- cumo/eval/mmmu_utils/eval_utils.py +255 -0
- cumo/eval/model_qa.py +64 -0
- cumo/eval/model_vqa.py +102 -0
- cumo/eval/model_vqa_loader.py +166 -0
- cumo/eval/model_vqa_mathvista.py +141 -0
- cumo/eval/model_vqa_mmbench.py +161 -0
- cumo/eval/model_vqa_mmmu.py +165 -0
- cumo/eval/model_vqa_science.py +130 -0
- cumo/eval/summarize_gpt_review.py +58 -0
- cumo/mm_utils.py +265 -0
- cumo/model/__init__.py +7 -0
- cumo/model/builder.py +159 -0
- cumo/model/language_model/llava_llama.py +158 -0
- cumo/model/language_model/llava_mistral.py +195 -0
- cumo/model/language_model/llava_mixtral.py +245 -0
- cumo/model/language_model/llava_mpt.py +97 -0
- cumo/model/language_model/smoe_mixtral_helper.py +85 -0
- cumo/model/llava_arch.py +381 -0
- cumo/model/multimodal_encoder/builder.py +10 -0
- cumo/model/multimodal_encoder/clip.py +205 -0
- cumo/model/multimodal_encoder/clip_encoder.py +160 -0
- cumo/model/multimodal_encoder/clip_smoe.py +238 -0
- cumo/model/multimodal_projector/builder.py +104 -0
- cumo/model/utils.py +20 -0
- cumo/train/llama_flash_attn_monkey_patch.py +133 -0
- cumo/train/llama_xformers_attn_monkey_patch.py +129 -0
- cumo/train/llava_trainer.py +273 -0
- cumo/train/train.py +1086 -0
- cumo/train/train_mem.py +4 -0
- cumo/train/train_xformers.py +13 -0
- cumo/utils.py +144 -0
cumo/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
try:
|
2 |
+
from .model import LlavaLlamaForCausalLM, LlavaMistralForCausalLM
|
3 |
+
except:
|
4 |
+
pass
|
cumo/constants.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
|
16 |
+
# Copyright 2024 Jiachen Li
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
20 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
21 |
+
|
22 |
+
LOGDIR = "./logs/"
|
23 |
+
|
24 |
+
# Model Constants
|
25 |
+
IGNORE_INDEX = -100
|
26 |
+
IMAGE_TOKEN_INDEX = -200
|
27 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
28 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
29 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
30 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
31 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
cumo/conversation.py
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
|
16 |
+
# Copyright 2024 Jiachen Li
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
import dataclasses
|
20 |
+
from enum import auto, Enum
|
21 |
+
from typing import List, Tuple
|
22 |
+
import base64
|
23 |
+
from io import BytesIO
|
24 |
+
from PIL import Image
|
25 |
+
|
26 |
+
class SeparatorStyle(Enum):
|
27 |
+
"""Different separator style."""
|
28 |
+
SINGLE = auto()
|
29 |
+
TWO = auto()
|
30 |
+
MPT = auto()
|
31 |
+
PLAIN = auto()
|
32 |
+
LLAMA_2 = auto()
|
33 |
+
|
34 |
+
|
35 |
+
@dataclasses.dataclass
|
36 |
+
class Conversation:
|
37 |
+
"""A class that keeps all conversation history."""
|
38 |
+
system: str
|
39 |
+
roles: List[str]
|
40 |
+
messages: List[List[str]]
|
41 |
+
offset: int
|
42 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
43 |
+
sep: str = "###"
|
44 |
+
sep2: str = None
|
45 |
+
version: str = "Unknown"
|
46 |
+
|
47 |
+
skip_next: bool = False
|
48 |
+
|
49 |
+
def get_prompt(self):
|
50 |
+
messages = self.messages
|
51 |
+
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
52 |
+
messages = self.messages.copy()
|
53 |
+
init_role, init_msg = messages[0].copy()
|
54 |
+
init_msg = init_msg[0].replace("<image>", "").strip()
|
55 |
+
if 'mmtag' in self.version:
|
56 |
+
messages[0] = (init_role, init_msg)
|
57 |
+
messages.insert(0, (self.roles[0], "<Image><image></Image>"))
|
58 |
+
messages.insert(1, (self.roles[1], "Received."))
|
59 |
+
else:
|
60 |
+
messages[0] = (init_role, "<image>\n" + init_msg)
|
61 |
+
|
62 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
63 |
+
ret = self.system + self.sep
|
64 |
+
for role, message in messages:
|
65 |
+
if message:
|
66 |
+
if type(message) is tuple:
|
67 |
+
message, _, _ = message
|
68 |
+
ret += role + ": " + message + self.sep
|
69 |
+
else:
|
70 |
+
ret += role + ":"
|
71 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
72 |
+
seps = [self.sep, self.sep2]
|
73 |
+
ret = self.system + seps[0]
|
74 |
+
for i, (role, message) in enumerate(messages):
|
75 |
+
if message:
|
76 |
+
if type(message) is tuple:
|
77 |
+
message, _, _ = message
|
78 |
+
ret += role + ": " + message + seps[i % 2]
|
79 |
+
else:
|
80 |
+
ret += role + ":"
|
81 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
82 |
+
ret = self.system + self.sep
|
83 |
+
for role, message in messages:
|
84 |
+
if message:
|
85 |
+
if type(message) is tuple:
|
86 |
+
message, _, _ = message
|
87 |
+
ret += role + message + self.sep
|
88 |
+
else:
|
89 |
+
ret += role
|
90 |
+
elif self.sep_style == SeparatorStyle.LLAMA_2:
|
91 |
+
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg
|
92 |
+
wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
|
93 |
+
ret = ""
|
94 |
+
|
95 |
+
for i, (role, message) in enumerate(messages):
|
96 |
+
if i == 0:
|
97 |
+
assert message, "first message should not be none"
|
98 |
+
assert role == self.roles[0], "first message should come from user"
|
99 |
+
if message:
|
100 |
+
if type(message) is tuple:
|
101 |
+
message, _, _ = message
|
102 |
+
if i == 0: message = wrap_sys(self.system) + message
|
103 |
+
if i % 2 == 0:
|
104 |
+
message = wrap_inst(message)
|
105 |
+
if i == 0:
|
106 |
+
ret += "<s>" + message
|
107 |
+
else:
|
108 |
+
ret += self.sep + message
|
109 |
+
else:
|
110 |
+
ret += " " + message + " " + self.sep2
|
111 |
+
else:
|
112 |
+
ret += ""
|
113 |
+
ret = ret.lstrip(self.sep)
|
114 |
+
elif self.sep_style == SeparatorStyle.PLAIN:
|
115 |
+
seps = [self.sep, self.sep2]
|
116 |
+
ret = self.system
|
117 |
+
for i, (role, message) in enumerate(messages):
|
118 |
+
if message:
|
119 |
+
if type(message) is tuple:
|
120 |
+
message, _, _ = message
|
121 |
+
ret += message + seps[i % 2]
|
122 |
+
else:
|
123 |
+
ret += ""
|
124 |
+
else:
|
125 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
126 |
+
|
127 |
+
return ret
|
128 |
+
|
129 |
+
def append_message(self, role, message):
|
130 |
+
self.messages.append([role, message])
|
131 |
+
|
132 |
+
def process_image(self, image, image_process_mode, return_pil=False, image_format='PNG', max_len=1344, min_len=672):
|
133 |
+
if image_process_mode == "Pad":
|
134 |
+
def expand2square(pil_img, background_color=(122, 116, 104)):
|
135 |
+
width, height = pil_img.size
|
136 |
+
if width == height:
|
137 |
+
return pil_img
|
138 |
+
elif width > height:
|
139 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
140 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
141 |
+
return result
|
142 |
+
else:
|
143 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
144 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
145 |
+
return result
|
146 |
+
image = expand2square(image)
|
147 |
+
elif image_process_mode in ["Default", "Crop"]:
|
148 |
+
pass
|
149 |
+
elif image_process_mode == "Resize":
|
150 |
+
image = image.resize((336, 336))
|
151 |
+
else:
|
152 |
+
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
|
153 |
+
if max(image.size) > max_len:
|
154 |
+
max_hw, min_hw = max(image.size), min(image.size)
|
155 |
+
aspect_ratio = max_hw / min_hw
|
156 |
+
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
157 |
+
longest_edge = int(shortest_edge * aspect_ratio)
|
158 |
+
W, H = image.size
|
159 |
+
if H > W:
|
160 |
+
H, W = longest_edge, shortest_edge
|
161 |
+
else:
|
162 |
+
H, W = shortest_edge, longest_edge
|
163 |
+
image = image.resize((W, H))
|
164 |
+
if return_pil:
|
165 |
+
return image
|
166 |
+
else:
|
167 |
+
buffered = BytesIO()
|
168 |
+
image.save(buffered, format=image_format)
|
169 |
+
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
170 |
+
return img_b64_str
|
171 |
+
|
172 |
+
def get_images(self, return_pil=False):
|
173 |
+
images = []
|
174 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
175 |
+
if i % 2 == 0:
|
176 |
+
if type(msg) is tuple:
|
177 |
+
msg, image, image_process_mode = msg
|
178 |
+
image = self.process_image(image, image_process_mode, return_pil=return_pil)
|
179 |
+
images.append(image)
|
180 |
+
return images
|
181 |
+
|
182 |
+
def to_gradio_chatbot(self):
|
183 |
+
ret = []
|
184 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
185 |
+
if i % 2 == 0:
|
186 |
+
if type(msg) is tuple:
|
187 |
+
msg, image, image_process_mode = msg
|
188 |
+
img_b64_str = self.process_image(
|
189 |
+
image, "Default", return_pil=False,
|
190 |
+
image_format='JPEG')
|
191 |
+
img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" alt="user upload image" />'
|
192 |
+
msg = img_str + msg.replace('<image>', '').strip()
|
193 |
+
ret.append([msg, None])
|
194 |
+
else:
|
195 |
+
ret.append([msg, None])
|
196 |
+
else:
|
197 |
+
ret[-1][-1] = msg
|
198 |
+
return ret
|
199 |
+
|
200 |
+
def copy(self):
|
201 |
+
return Conversation(
|
202 |
+
system=self.system,
|
203 |
+
roles=self.roles,
|
204 |
+
messages=[[x, y] for x, y in self.messages],
|
205 |
+
offset=self.offset,
|
206 |
+
sep_style=self.sep_style,
|
207 |
+
sep=self.sep,
|
208 |
+
sep2=self.sep2,
|
209 |
+
version=self.version)
|
210 |
+
|
211 |
+
def dict(self):
|
212 |
+
if len(self.get_images()) > 0:
|
213 |
+
return {
|
214 |
+
"system": self.system,
|
215 |
+
"roles": self.roles,
|
216 |
+
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
|
217 |
+
"offset": self.offset,
|
218 |
+
"sep": self.sep,
|
219 |
+
"sep2": self.sep2,
|
220 |
+
}
|
221 |
+
return {
|
222 |
+
"system": self.system,
|
223 |
+
"roles": self.roles,
|
224 |
+
"messages": self.messages,
|
225 |
+
"offset": self.offset,
|
226 |
+
"sep": self.sep,
|
227 |
+
"sep2": self.sep2,
|
228 |
+
}
|
229 |
+
|
230 |
+
|
231 |
+
conv_vicuna_v0 = Conversation(
|
232 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
233 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
234 |
+
roles=("Human", "Assistant"),
|
235 |
+
messages=(
|
236 |
+
("Human", "What are the key differences between renewable and non-renewable energy sources?"),
|
237 |
+
("Assistant",
|
238 |
+
"Renewable energy sources are those that can be replenished naturally in a relatively "
|
239 |
+
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
|
240 |
+
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
|
241 |
+
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
|
242 |
+
"renewable and non-renewable energy sources:\n"
|
243 |
+
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
|
244 |
+
"energy sources are finite and will eventually run out.\n"
|
245 |
+
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
|
246 |
+
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
|
247 |
+
"and other negative effects.\n"
|
248 |
+
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
|
249 |
+
"have lower operational costs than non-renewable sources.\n"
|
250 |
+
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
|
251 |
+
"locations than non-renewable sources.\n"
|
252 |
+
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
|
253 |
+
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
|
254 |
+
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
|
255 |
+
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
|
256 |
+
),
|
257 |
+
offset=2,
|
258 |
+
sep_style=SeparatorStyle.SINGLE,
|
259 |
+
sep="###",
|
260 |
+
)
|
261 |
+
|
262 |
+
conv_vicuna_v1 = Conversation(
|
263 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
264 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
265 |
+
roles=("USER", "ASSISTANT"),
|
266 |
+
version="v1",
|
267 |
+
messages=(),
|
268 |
+
offset=0,
|
269 |
+
sep_style=SeparatorStyle.TWO,
|
270 |
+
sep=" ",
|
271 |
+
sep2="</s>",
|
272 |
+
)
|
273 |
+
|
274 |
+
conv_mistral_instruct = Conversation(
|
275 |
+
system="",
|
276 |
+
roles=("USER", "ASSISTANT"),
|
277 |
+
version="llama_v2",
|
278 |
+
messages=(),
|
279 |
+
offset=0,
|
280 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
281 |
+
sep="",
|
282 |
+
sep2="</s>",
|
283 |
+
)
|
284 |
+
|
285 |
+
conv_mistral_instruct_system = Conversation(
|
286 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
287 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
288 |
+
roles=("USER", "ASSISTANT"),
|
289 |
+
version="llama_v2",
|
290 |
+
messages=(),
|
291 |
+
offset=0,
|
292 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
293 |
+
sep="",
|
294 |
+
sep2="</s>",
|
295 |
+
)
|
296 |
+
|
297 |
+
conv_llama_2 = Conversation(
|
298 |
+
system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
|
299 |
+
|
300 |
+
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
|
301 |
+
roles=("USER", "ASSISTANT"),
|
302 |
+
version="llama_v2",
|
303 |
+
messages=(),
|
304 |
+
offset=0,
|
305 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
306 |
+
sep="<s>",
|
307 |
+
sep2="</s>",
|
308 |
+
)
|
309 |
+
|
310 |
+
conv_llava_llama_2 = Conversation(
|
311 |
+
system="You are a helpful language and vision assistant. "
|
312 |
+
"You are able to understand the visual content that the user provides, "
|
313 |
+
"and assist the user with a variety of tasks using natural language.",
|
314 |
+
roles=("USER", "ASSISTANT"),
|
315 |
+
version="llama_v2",
|
316 |
+
messages=(),
|
317 |
+
offset=0,
|
318 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
319 |
+
sep="<s>",
|
320 |
+
sep2="</s>",
|
321 |
+
)
|
322 |
+
|
323 |
+
conv_mpt = Conversation(
|
324 |
+
system="""<|im_start|>system
|
325 |
+
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
|
326 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
327 |
+
version="mpt",
|
328 |
+
messages=(),
|
329 |
+
offset=0,
|
330 |
+
sep_style=SeparatorStyle.MPT,
|
331 |
+
sep="<|im_end|>",
|
332 |
+
)
|
333 |
+
|
334 |
+
conv_llava_plain = Conversation(
|
335 |
+
system="",
|
336 |
+
roles=("", ""),
|
337 |
+
messages=(
|
338 |
+
),
|
339 |
+
offset=0,
|
340 |
+
sep_style=SeparatorStyle.PLAIN,
|
341 |
+
sep="\n",
|
342 |
+
)
|
343 |
+
|
344 |
+
conv_llava_v0 = Conversation(
|
345 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
346 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
347 |
+
roles=("Human", "Assistant"),
|
348 |
+
messages=(
|
349 |
+
),
|
350 |
+
offset=0,
|
351 |
+
sep_style=SeparatorStyle.SINGLE,
|
352 |
+
sep="###",
|
353 |
+
)
|
354 |
+
|
355 |
+
conv_llava_v0_mmtag = Conversation(
|
356 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
357 |
+
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
358 |
+
"The visual content will be provided with the following format: <Image>visual content</Image>.",
|
359 |
+
roles=("Human", "Assistant"),
|
360 |
+
messages=(
|
361 |
+
),
|
362 |
+
offset=0,
|
363 |
+
sep_style=SeparatorStyle.SINGLE,
|
364 |
+
sep="###",
|
365 |
+
version="v0_mmtag",
|
366 |
+
)
|
367 |
+
|
368 |
+
conv_llava_v1 = Conversation(
|
369 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
370 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
371 |
+
roles=("USER", "ASSISTANT"),
|
372 |
+
version="v1",
|
373 |
+
messages=(),
|
374 |
+
offset=0,
|
375 |
+
sep_style=SeparatorStyle.TWO,
|
376 |
+
sep=" ",
|
377 |
+
sep2="</s>",
|
378 |
+
)
|
379 |
+
|
380 |
+
conv_llava_v1_mmtag = Conversation(
|
381 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
382 |
+
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
383 |
+
"The visual content will be provided with the following format: <Image>visual content</Image>.",
|
384 |
+
roles=("USER", "ASSISTANT"),
|
385 |
+
messages=(),
|
386 |
+
offset=0,
|
387 |
+
sep_style=SeparatorStyle.TWO,
|
388 |
+
sep=" ",
|
389 |
+
sep2="</s>",
|
390 |
+
version="v1_mmtag",
|
391 |
+
)
|
392 |
+
|
393 |
+
conv_chatml_direct = Conversation(
|
394 |
+
system="""<|im_start|>system
|
395 |
+
Answer the questions.""",
|
396 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
397 |
+
version="mpt",
|
398 |
+
messages=(),
|
399 |
+
offset=0,
|
400 |
+
sep_style=SeparatorStyle.MPT,
|
401 |
+
sep="<|im_end|>",
|
402 |
+
)
|
403 |
+
|
404 |
+
default_conversation = conv_vicuna_v1
|
405 |
+
conv_templates = {
|
406 |
+
"default": conv_vicuna_v0,
|
407 |
+
"v0": conv_vicuna_v0,
|
408 |
+
"v1": conv_vicuna_v1,
|
409 |
+
"vicuna_v1": conv_vicuna_v1,
|
410 |
+
"llama_2": conv_llama_2,
|
411 |
+
"mistral_instruct": conv_mistral_instruct,
|
412 |
+
"mistral_instruct_system": conv_mistral_instruct_system,
|
413 |
+
"chatml_direct": conv_chatml_direct,
|
414 |
+
"mistral_direct": conv_chatml_direct,
|
415 |
+
"plain": conv_llava_plain,
|
416 |
+
"v0_plain": conv_llava_plain,
|
417 |
+
"llava_v0": conv_llava_v0,
|
418 |
+
"v0_mmtag": conv_llava_v0_mmtag,
|
419 |
+
"llava_v1": conv_llava_v1,
|
420 |
+
"v1_mmtag": conv_llava_v1_mmtag,
|
421 |
+
"llava_llama_2": conv_llava_llama_2,
|
422 |
+
"mpt": conv_mpt,
|
423 |
+
}
|
424 |
+
|
425 |
+
|
426 |
+
if __name__ == "__main__":
|
427 |
+
print(default_conversation.get_prompt())
|
cumo/eval/calculate_score.py
ADDED
@@ -0,0 +1,266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import argparse
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
# !pip install python-Levenshtein
|
7 |
+
from Levenshtein import distance
|
8 |
+
import json
|
9 |
+
import sys
|
10 |
+
sys.path.append('../')
|
11 |
+
#from utilities import *
|
12 |
+
|
13 |
+
def read_json(path):
|
14 |
+
with open(path, 'r', encoding='utf-8') as f:
|
15 |
+
return json.load(f)
|
16 |
+
|
17 |
+
def save_json(data, path):
|
18 |
+
with open(path, 'w') as f:
|
19 |
+
json.dump(data, f, indent=4)
|
20 |
+
|
21 |
+
def get_most_similar(prediction, choices):
|
22 |
+
"""
|
23 |
+
Use the Levenshtein distance (or edit distance) to determine which of the choices is most similar to the given prediction
|
24 |
+
"""
|
25 |
+
distances = [distance(prediction, choice) for choice in choices]
|
26 |
+
ind = distances.index(min(distances))
|
27 |
+
return choices[ind]
|
28 |
+
# return min(choices, key=lambda choice: distance(prediction, choice))
|
29 |
+
|
30 |
+
|
31 |
+
def normalize_extracted_answer(extraction, choices, question_type, answer_type, precision):
|
32 |
+
"""
|
33 |
+
Normalize the extracted answer to match the answer type
|
34 |
+
"""
|
35 |
+
if question_type == 'multi_choice':
|
36 |
+
# make sure the extraction is a string
|
37 |
+
if isinstance(extraction, str):
|
38 |
+
extraction = extraction.strip()
|
39 |
+
else:
|
40 |
+
try:
|
41 |
+
extraction = str(extraction)
|
42 |
+
except:
|
43 |
+
extraction = ""
|
44 |
+
|
45 |
+
# extract "A" from "(A) text"
|
46 |
+
letter = re.findall(r'\(([a-zA-Z])\)', extraction)
|
47 |
+
if len(letter) > 0:
|
48 |
+
extraction = letter[0].upper()
|
49 |
+
|
50 |
+
options = [chr(ord('A') + i) for i in range(len(choices))]
|
51 |
+
|
52 |
+
if extraction in options:
|
53 |
+
# convert option letter to text, e.g. "A" -> "text"
|
54 |
+
ind = options.index(extraction)
|
55 |
+
extraction = choices[ind]
|
56 |
+
else:
|
57 |
+
# select the most similar option
|
58 |
+
extraction = get_most_similar(extraction, choices)
|
59 |
+
assert extraction in choices
|
60 |
+
|
61 |
+
elif answer_type == 'integer':
|
62 |
+
try:
|
63 |
+
extraction = str(int(float(extraction)))
|
64 |
+
except:
|
65 |
+
extraction = None
|
66 |
+
|
67 |
+
elif answer_type == 'float':
|
68 |
+
try:
|
69 |
+
extraction = str(round(float(extraction), precision))
|
70 |
+
except:
|
71 |
+
extraction = None
|
72 |
+
|
73 |
+
elif answer_type == 'list':
|
74 |
+
try:
|
75 |
+
extraction = str(extraction)
|
76 |
+
except:
|
77 |
+
extraction = None
|
78 |
+
|
79 |
+
return extraction
|
80 |
+
|
81 |
+
|
82 |
+
def safe_equal(prediction, answer):
|
83 |
+
"""
|
84 |
+
Check if the prediction is equal to the answer, even if they are of different types
|
85 |
+
"""
|
86 |
+
try:
|
87 |
+
if prediction == answer:
|
88 |
+
return True
|
89 |
+
return False
|
90 |
+
except Exception as e:
|
91 |
+
print(e)
|
92 |
+
return False
|
93 |
+
|
94 |
+
|
95 |
+
def get_acc_with_contion(res_pd, key, value):
|
96 |
+
if key == 'skills':
|
97 |
+
# if value in res_pd[key]:
|
98 |
+
total_pd = res_pd[res_pd[key].apply(lambda x: value in x)]
|
99 |
+
else:
|
100 |
+
total_pd = res_pd[res_pd[key] == value]
|
101 |
+
|
102 |
+
correct_pd = total_pd[total_pd['true_false'] == True]
|
103 |
+
acc = "{:.2f}".format(len(correct_pd) / len(total_pd) * 100)
|
104 |
+
return len(correct_pd), len(total_pd), acc
|
105 |
+
|
106 |
+
if __name__ == '__main__':
|
107 |
+
parser = argparse.ArgumentParser()
|
108 |
+
parser.add_argument('--output_dir', type=str, default='../results')
|
109 |
+
parser.add_argument('--output_file', type=str, default='output.json')
|
110 |
+
parser.add_argument('--score_file', type=str, default='scores.json')
|
111 |
+
parser.add_argument('--gt_file', type=str, default='../data/testmini.json', help='ground truth file')
|
112 |
+
parser.add_argument('--number', type=int, default=-1, help='number of problems to run')
|
113 |
+
parser.add_argument('--rerun', action='store_true', help='rerun the evaluation')
|
114 |
+
parser.add_argument('--caculate_gain', action='store_true', help='caculate the socre gains over random guess')
|
115 |
+
parser.add_argument('--random_file', type=str, default='score_random_guess.json')
|
116 |
+
args = parser.parse_args()
|
117 |
+
|
118 |
+
# args
|
119 |
+
output_file = os.path.join(args.output_dir, args.output_file)
|
120 |
+
|
121 |
+
# # quick test
|
122 |
+
# output_file = '../results/llava-llama-2-13b/output_llava_llama_2_13b.json'
|
123 |
+
|
124 |
+
# read json
|
125 |
+
print(f"Reading {output_file}...")
|
126 |
+
results = read_json(output_file)
|
127 |
+
|
128 |
+
# read ground truth
|
129 |
+
print(f"Reading {args.gt_file}...")
|
130 |
+
gts = read_json(args.gt_file)
|
131 |
+
|
132 |
+
# full pids
|
133 |
+
full_pids = list(results.keys())
|
134 |
+
if args.number > 0:
|
135 |
+
full_pids = full_pids[:min(args.number, len(full_pids))]
|
136 |
+
print("Number of testing problems:", len(full_pids))
|
137 |
+
|
138 |
+
## [1] Evaluate if the prediction is true or false
|
139 |
+
print("\nEvaluating the predictions...")
|
140 |
+
update_json_flag = False
|
141 |
+
for pid in full_pids:
|
142 |
+
problem = results[pid]
|
143 |
+
# print(problem)
|
144 |
+
|
145 |
+
if args.rerun:
|
146 |
+
if 'prediction' in problem:
|
147 |
+
del problem['prediction']
|
148 |
+
if 'true_false' in problem:
|
149 |
+
del problem['true_false']
|
150 |
+
|
151 |
+
choices = problem['choices']
|
152 |
+
question_type = problem['question_type']
|
153 |
+
answer_type = problem['answer_type']
|
154 |
+
precision = problem['precision']
|
155 |
+
extraction = problem['extraction']
|
156 |
+
|
157 |
+
if 'answer' in problem:
|
158 |
+
answer = problem['answer']
|
159 |
+
else:
|
160 |
+
answer = gts[pid]['answer']
|
161 |
+
problem['answer'] = answer
|
162 |
+
|
163 |
+
# normalize the extracted answer to match the answer type
|
164 |
+
prediction = normalize_extracted_answer(extraction, choices, question_type, answer_type, precision)
|
165 |
+
|
166 |
+
# verify the prediction is true or false
|
167 |
+
true_false = safe_equal(prediction, answer)
|
168 |
+
|
169 |
+
# update the problem
|
170 |
+
if "true_false" not in problem:
|
171 |
+
update_json_flag = True
|
172 |
+
|
173 |
+
elif true_false != problem['true_false']:
|
174 |
+
update_json_flag = True
|
175 |
+
|
176 |
+
if "prediction" not in problem:
|
177 |
+
update_json_flag = True
|
178 |
+
|
179 |
+
elif prediction != problem['prediction']:
|
180 |
+
update_json_flag = True
|
181 |
+
|
182 |
+
problem['prediction'] = prediction
|
183 |
+
problem['true_false'] = true_false
|
184 |
+
|
185 |
+
# save the updated json
|
186 |
+
if update_json_flag:
|
187 |
+
print("\n!!!Some problems are updated.!!!")
|
188 |
+
print(f"\nSaving {output_file}...")
|
189 |
+
save_json(results, output_file)
|
190 |
+
|
191 |
+
## [2] Calculate the average accuracy
|
192 |
+
total = len(full_pids)
|
193 |
+
correct = 0
|
194 |
+
for pid in full_pids:
|
195 |
+
if results[pid]['true_false']:
|
196 |
+
correct += 1
|
197 |
+
accuracy = str(round(correct / total * 100, 2))
|
198 |
+
print(f"\nCorrect: {correct}, Total: {total}, Accuracy: {accuracy}%")
|
199 |
+
|
200 |
+
scores = {"average": {"accuracy": accuracy, "correct": correct, "total": total}}
|
201 |
+
|
202 |
+
## [3] Calculate the fine-grained accuracy scores
|
203 |
+
|
204 |
+
# merge the 'metadata' attribute into the data
|
205 |
+
for pid in results:
|
206 |
+
results[pid].update(results[pid].pop('metadata'))
|
207 |
+
|
208 |
+
# convert the data to a pandas DataFrame
|
209 |
+
df = pd.DataFrame(results).T
|
210 |
+
|
211 |
+
print(len(df))
|
212 |
+
print("Number of test problems:", len(df))
|
213 |
+
# assert len(df) == 1000 # Important!!!
|
214 |
+
|
215 |
+
# asign the target keys for evaluation
|
216 |
+
target_keys = ['question_type', 'answer_type', 'language', 'source', 'category', 'task', 'context', 'grade', 'skills']
|
217 |
+
|
218 |
+
for key in target_keys:
|
219 |
+
print(f"\nType: [{key}]")
|
220 |
+
# get the unique values of the key
|
221 |
+
if key == 'skills':
|
222 |
+
# the value is a list
|
223 |
+
values = []
|
224 |
+
for i in range(len(df)):
|
225 |
+
values += df[key][i]
|
226 |
+
values = list(set(values))
|
227 |
+
else:
|
228 |
+
values = df[key].unique()
|
229 |
+
#print(values)
|
230 |
+
|
231 |
+
# calculate the accuracy for each value
|
232 |
+
scores[key] = {}
|
233 |
+
for value in values:
|
234 |
+
correct, total, acc = get_acc_with_contion(df, key, value)
|
235 |
+
if total > 0:
|
236 |
+
print(f"[{value}]: {acc}% ({correct}/{total})")
|
237 |
+
scores[key][value] = {"accuracy": acc, "correct": correct, "total": total}
|
238 |
+
|
239 |
+
# sort the scores by accuracy
|
240 |
+
scores[key] = dict(sorted(scores[key].items(), key=lambda item: float(item[1]['accuracy']), reverse=True))
|
241 |
+
|
242 |
+
# save the scores
|
243 |
+
scores_file = os.path.join(args.output_dir, args.score_file)
|
244 |
+
print(f"\nSaving {scores_file}...")
|
245 |
+
save_json(scores, scores_file)
|
246 |
+
print("\nDone!")
|
247 |
+
|
248 |
+
# [4] Calculate the score gains over random guess
|
249 |
+
if args.caculate_gain:
|
250 |
+
random_file = os.path.join(args.output_dir, args.random_file)
|
251 |
+
random_scores = json.load(open(random_file))
|
252 |
+
|
253 |
+
print("\nCalculating the score gains...")
|
254 |
+
for key in scores:
|
255 |
+
if key == 'average':
|
256 |
+
gain = round(float(scores[key]['accuracy']) - float(random_scores[key]['accuracy']), 2)
|
257 |
+
scores[key]['acc_gain'] = gain
|
258 |
+
else:
|
259 |
+
for sub_key in scores[key]:
|
260 |
+
gain = round(float(scores[key][sub_key]['accuracy']) - float(random_scores[key][sub_key]['accuracy']), 2)
|
261 |
+
scores[key][sub_key]['acc_gain'] = str(gain)
|
262 |
+
|
263 |
+
# save the score gains
|
264 |
+
print(f"\nSaving {scores_file}...")
|
265 |
+
save_json(scores, scores_file)
|
266 |
+
print("\nDone!")
|
cumo/eval/eval_gpt_review_bench.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
from lib2to3.pgen2.token import OP
|
4 |
+
import os
|
5 |
+
import openai
|
6 |
+
from openai import AzureOpenAI
|
7 |
+
from openai import OpenAI
|
8 |
+
import time
|
9 |
+
|
10 |
+
NUM_SECONDS_TO_SLEEP = 0.5
|
11 |
+
|
12 |
+
client = AzureOpenAI(
|
13 |
+
api_version="2024-01-25",
|
14 |
+
api_key="input your own api key",
|
15 |
+
)
|
16 |
+
|
17 |
+
def get_eval(content: str, max_tokens: int):
|
18 |
+
while True:
|
19 |
+
try:
|
20 |
+
response = client.chat.completions.create(
|
21 |
+
model='gpt-4',
|
22 |
+
messages=[{
|
23 |
+
'role': 'system',
|
24 |
+
'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
|
25 |
+
}, {
|
26 |
+
'role': 'user',
|
27 |
+
'content': content,
|
28 |
+
}],
|
29 |
+
temperature=0.2, # TODO: figure out which temperature is best for evaluation
|
30 |
+
max_tokens=max_tokens,
|
31 |
+
)
|
32 |
+
break
|
33 |
+
|
34 |
+
except Exception as e:
|
35 |
+
print(e)
|
36 |
+
time.sleep(NUM_SECONDS_TO_SLEEP)
|
37 |
+
|
38 |
+
return response.choices[0].message.content
|
39 |
+
|
40 |
+
def parse_score(review):
|
41 |
+
try:
|
42 |
+
score_pair = review.split('\n')[0]
|
43 |
+
score_pair = score_pair.replace(',', ' ')
|
44 |
+
sp = score_pair.split(' ')
|
45 |
+
if len(sp) == 2:
|
46 |
+
return [float(sp[0]), float(sp[1])]
|
47 |
+
else:
|
48 |
+
print('error', review)
|
49 |
+
return [-1, -1]
|
50 |
+
except Exception as e:
|
51 |
+
print(e)
|
52 |
+
print('error', review)
|
53 |
+
return [-1, -1]
|
54 |
+
|
55 |
+
if __name__ == '__main__':
|
56 |
+
parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
|
57 |
+
parser.add_argument('-q', '--question')
|
58 |
+
parser.add_argument('-c', '--context')
|
59 |
+
parser.add_argument('-a', '--answer-list', nargs='+', default=[])
|
60 |
+
parser.add_argument('-r', '--rule')
|
61 |
+
parser.add_argument('-o', '--output')
|
62 |
+
parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
|
63 |
+
args = parser.parse_args()
|
64 |
+
|
65 |
+
f_q = open(os.path.expanduser(args.question))
|
66 |
+
f_ans1 = open(os.path.expanduser(args.answer_list[0]))
|
67 |
+
f_ans2 = open(os.path.expanduser(args.answer_list[1]))
|
68 |
+
rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
|
69 |
+
|
70 |
+
if os.path.isfile(os.path.expanduser(args.output)):
|
71 |
+
cur_reviews = [json.loads(line) for line in open(os.path.expanduser(args.output))]
|
72 |
+
else:
|
73 |
+
cur_reviews = []
|
74 |
+
|
75 |
+
review_file = open(f'{args.output}', 'a')
|
76 |
+
|
77 |
+
context_list = [json.loads(line) for line in open(os.path.expanduser(args.context))]
|
78 |
+
image_to_context = {context['image']: context for context in context_list}
|
79 |
+
|
80 |
+
handles = []
|
81 |
+
idx = 0
|
82 |
+
for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
|
83 |
+
ques = json.loads(ques_js)
|
84 |
+
ans1 = json.loads(ans1_js)
|
85 |
+
ans2 = json.loads(ans2_js)
|
86 |
+
|
87 |
+
inst = image_to_context[ques['image']]
|
88 |
+
|
89 |
+
if isinstance(inst['caption'], list):
|
90 |
+
cap_str = '\n'.join(inst['caption'])
|
91 |
+
else:
|
92 |
+
cap_str = inst['caption']
|
93 |
+
|
94 |
+
category = 'llava_bench_' + json.loads(ques_js)['category']
|
95 |
+
if category in rule_dict:
|
96 |
+
rule = rule_dict[category]
|
97 |
+
else:
|
98 |
+
assert False, f"Visual QA category not found in rule file: {category}."
|
99 |
+
prompt = rule['prompt']
|
100 |
+
role = rule['role']
|
101 |
+
content = (f'[Context]\n{cap_str}\n\n'
|
102 |
+
f'[Question]\n{ques["text"]}\n\n'
|
103 |
+
f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
|
104 |
+
f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
|
105 |
+
f'[System]\n{prompt}\n\n')
|
106 |
+
cur_js = {
|
107 |
+
'id': idx+1,
|
108 |
+
'question_id': ques['question_id'],
|
109 |
+
'answer1_id': ans1.get('answer_id', ans1['question_id']),
|
110 |
+
'answer2_id': ans2.get('answer_id', ans2['answer_id']),
|
111 |
+
'category': category
|
112 |
+
}
|
113 |
+
if idx >= len(cur_reviews):
|
114 |
+
review = get_eval(content, args.max_tokens)
|
115 |
+
scores = parse_score(review)
|
116 |
+
cur_js['content'] = review
|
117 |
+
cur_js['tuple'] = scores
|
118 |
+
review_file.write(json.dumps(cur_js) + '\n')
|
119 |
+
review_file.flush()
|
120 |
+
else:
|
121 |
+
print(f'Skipping {idx} as we already have it.')
|
122 |
+
idx += 1
|
123 |
+
print(idx)
|
124 |
+
review_file.close()
|
cumo/eval/eval_pope.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import argparse
|
4 |
+
def eval_pope(answers, label_file):
|
5 |
+
label_list = [json.loads(q)['label'] for q in open(label_file, 'r')]
|
6 |
+
|
7 |
+
for answer in answers:
|
8 |
+
text = answer['text']
|
9 |
+
|
10 |
+
# Only keep the first sentence
|
11 |
+
if text.find('.') != -1:
|
12 |
+
text = text.split('.')[0]
|
13 |
+
|
14 |
+
text = text.replace(',', '')
|
15 |
+
words = text.split(' ')
|
16 |
+
if 'No' in words or 'not' in words or 'no' in words:
|
17 |
+
answer['text'] = 'no'
|
18 |
+
else:
|
19 |
+
answer['text'] = 'yes'
|
20 |
+
|
21 |
+
for i in range(len(label_list)):
|
22 |
+
if label_list[i] == 'no':
|
23 |
+
label_list[i] = 0
|
24 |
+
else:
|
25 |
+
label_list[i] = 1
|
26 |
+
|
27 |
+
pred_list = []
|
28 |
+
for answer in answers:
|
29 |
+
if answer['text'] == 'no':
|
30 |
+
pred_list.append(0)
|
31 |
+
else:
|
32 |
+
pred_list.append(1)
|
33 |
+
|
34 |
+
pos = 1
|
35 |
+
neg = 0
|
36 |
+
yes_ratio = pred_list.count(1) / len(pred_list)
|
37 |
+
|
38 |
+
TP, TN, FP, FN = 0, 0, 0, 0
|
39 |
+
for pred, label in zip(pred_list, label_list):
|
40 |
+
if pred == pos and label == pos:
|
41 |
+
TP += 1
|
42 |
+
elif pred == pos and label == neg:
|
43 |
+
FP += 1
|
44 |
+
elif pred == neg and label == neg:
|
45 |
+
TN += 1
|
46 |
+
elif pred == neg and label == pos:
|
47 |
+
FN += 1
|
48 |
+
|
49 |
+
print('TP\tFP\tTN\tFN\t')
|
50 |
+
print('{}\t{}\t{}\t{}'.format(TP, FP, TN, FN))
|
51 |
+
|
52 |
+
precision = float(TP) / float(TP + FP)
|
53 |
+
recall = float(TP) / float(TP + FN)
|
54 |
+
f1 = 2*precision*recall / (precision + recall)
|
55 |
+
acc = (TP + TN) / (TP + TN + FP + FN)
|
56 |
+
print('Accuracy: {}'.format(acc))
|
57 |
+
print('Precision: {}'.format(precision))
|
58 |
+
print('Recall: {}'.format(recall))
|
59 |
+
print('F1 score: {}'.format(f1))
|
60 |
+
print('Yes ratio: {}'.format(yes_ratio))
|
61 |
+
print('%.3f, %.3f, %.3f, %.3f, %.3f' % (f1, acc, precision, recall, yes_ratio) )
|
62 |
+
return acc, f1
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
parser = argparse.ArgumentParser()
|
66 |
+
parser.add_argument("--annotation-dir", type=str)
|
67 |
+
parser.add_argument("--question-file", type=str)
|
68 |
+
parser.add_argument("--result-file", type=str)
|
69 |
+
args = parser.parse_args()
|
70 |
+
|
71 |
+
questions = [json.loads(line) for line in open(args.question_file)]
|
72 |
+
questions = {question['question_id']: question for question in questions}
|
73 |
+
answers = [json.loads(q) for q in open(args.result_file)]
|
74 |
+
acc_total = []
|
75 |
+
f1_total = []
|
76 |
+
for file in os.listdir(args.annotation_dir):
|
77 |
+
assert file.startswith('coco_pope_')
|
78 |
+
assert file.endswith('.json')
|
79 |
+
category = file[10:-5]
|
80 |
+
cur_answers = [x for x in answers if questions[x['question_id']]['category'] == category]
|
81 |
+
print('Category: {}, # samples: {}'.format(category, len(cur_answers)))
|
82 |
+
acc, f1 = eval_pope(cur_answers, os.path.join(args.annotation_dir, file))
|
83 |
+
acc_total.append(acc)
|
84 |
+
f1_total.append(f1)
|
85 |
+
print("====================================")
|
86 |
+
print('Average Acc: {}, Average F1: {}'.format(sum(acc_total)/len(acc_total), sum(f1_total)/len(f1_total)))
|
cumo/eval/eval_science_qa.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import random
|
6 |
+
|
7 |
+
|
8 |
+
def get_args():
|
9 |
+
parser = argparse.ArgumentParser()
|
10 |
+
parser.add_argument('--base-dir', type=str)
|
11 |
+
parser.add_argument('--result-file', type=str)
|
12 |
+
parser.add_argument('--output-file', type=str)
|
13 |
+
parser.add_argument('--output-result', type=str)
|
14 |
+
parser.add_argument('--split', type=str, default='test')
|
15 |
+
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
|
16 |
+
return parser.parse_args()
|
17 |
+
|
18 |
+
|
19 |
+
def convert_caps(results):
|
20 |
+
fakecaps = []
|
21 |
+
for result in results:
|
22 |
+
image_id = result['question_id']
|
23 |
+
caption = result['text']
|
24 |
+
fakecaps.append({"image_id": int(image_id), "caption": caption})
|
25 |
+
return fakecaps
|
26 |
+
|
27 |
+
|
28 |
+
def get_pred_idx(prediction, choices, options):
|
29 |
+
"""
|
30 |
+
Get the index (e.g. 2) from the prediction (e.g. 'C')
|
31 |
+
"""
|
32 |
+
if prediction in options[:len(choices)]:
|
33 |
+
return options.index(prediction)
|
34 |
+
else:
|
35 |
+
return -1
|
36 |
+
return random.choice(range(len(choices)))
|
37 |
+
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
args = get_args()
|
41 |
+
|
42 |
+
base_dir = args.base_dir
|
43 |
+
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
|
44 |
+
problems = json.load(open(os.path.join(base_dir, "problems.json")))
|
45 |
+
predictions = [json.loads(line) for line in open(args.result_file)]
|
46 |
+
predictions = {pred['question_id']: pred for pred in predictions}
|
47 |
+
split_problems = {idx: problems[idx] for idx in split_indices}
|
48 |
+
|
49 |
+
results = {'correct': [], 'incorrect': []}
|
50 |
+
sqa_results = {}
|
51 |
+
sqa_results['acc'] = None
|
52 |
+
sqa_results['correct'] = None
|
53 |
+
sqa_results['count'] = None
|
54 |
+
sqa_results['results'] = {}
|
55 |
+
sqa_results['outputs'] = {}
|
56 |
+
|
57 |
+
for prob_id, prob in split_problems.items():
|
58 |
+
if prob_id not in predictions:
|
59 |
+
pred = {'text': 'FAILED', 'prompt': 'Unknown'}
|
60 |
+
pred_text = 'FAILED'
|
61 |
+
else:
|
62 |
+
pred = predictions[prob_id]
|
63 |
+
pred_text = pred['text']
|
64 |
+
|
65 |
+
if pred_text in args.options:
|
66 |
+
answer = pred_text
|
67 |
+
elif len(pred_text) >= 3 and pred_text[0] in args.options and pred_text[1:3] == ". ":
|
68 |
+
answer = pred_text[0]
|
69 |
+
else:
|
70 |
+
pattern = re.compile(r'The answer is ([A-Z]).')
|
71 |
+
res = pattern.findall(pred_text)
|
72 |
+
if len(res) == 1:
|
73 |
+
answer = res[0] # 'A', 'B', ...
|
74 |
+
else:
|
75 |
+
answer = "FAILED"
|
76 |
+
|
77 |
+
pred_idx = get_pred_idx(answer, prob['choices'], args.options)
|
78 |
+
|
79 |
+
analysis = {
|
80 |
+
'question_id': prob_id,
|
81 |
+
'parsed_ans': answer,
|
82 |
+
'ground_truth': args.options[prob['answer']],
|
83 |
+
'question': pred['prompt'],
|
84 |
+
'pred': pred_text,
|
85 |
+
'is_multimodal': '<image>' in pred['prompt'],
|
86 |
+
}
|
87 |
+
|
88 |
+
sqa_results['results'][prob_id] = get_pred_idx(answer, prob['choices'], args.options)
|
89 |
+
sqa_results['outputs'][prob_id] = pred_text
|
90 |
+
|
91 |
+
if pred_idx == prob['answer']:
|
92 |
+
results['correct'].append(analysis)
|
93 |
+
else:
|
94 |
+
results['incorrect'].append(analysis)
|
95 |
+
|
96 |
+
correct = len(results['correct'])
|
97 |
+
total = len(results['correct']) + len(results['incorrect'])
|
98 |
+
|
99 |
+
###### IMG ######
|
100 |
+
multimodal_correct = len([x for x in results['correct'] if x['is_multimodal']])
|
101 |
+
multimodal_incorrect = len([x for x in results['incorrect'] if x['is_multimodal']])
|
102 |
+
multimodal_total = multimodal_correct + multimodal_incorrect
|
103 |
+
###### IMG ######
|
104 |
+
|
105 |
+
print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%, IMG-Accuracy: {multimodal_correct / multimodal_total * 100:.2f}%')
|
106 |
+
|
107 |
+
sqa_results['acc'] = correct / total * 100
|
108 |
+
sqa_results['correct'] = correct
|
109 |
+
sqa_results['count'] = total
|
110 |
+
|
111 |
+
with open(args.output_file, 'w') as f:
|
112 |
+
json.dump(results, f, indent=2)
|
113 |
+
with open(args.output_result, 'w') as f:
|
114 |
+
json.dump(sqa_results, f, indent=2)
|
cumo/eval/eval_textvqa.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
import json
|
4 |
+
import re
|
5 |
+
|
6 |
+
from cumo.eval.m4c_evaluator import TextVQAAccuracyEvaluator
|
7 |
+
|
8 |
+
|
9 |
+
def get_args():
|
10 |
+
parser = argparse.ArgumentParser()
|
11 |
+
parser.add_argument('--annotation-file', type=str)
|
12 |
+
parser.add_argument('--result-file', type=str)
|
13 |
+
parser.add_argument('--result-dir', type=str)
|
14 |
+
return parser.parse_args()
|
15 |
+
|
16 |
+
|
17 |
+
def prompt_processor(prompt):
|
18 |
+
if prompt.startswith('OCR tokens: '):
|
19 |
+
pattern = r"Question: (.*?) Short answer:"
|
20 |
+
match = re.search(pattern, prompt, re.DOTALL)
|
21 |
+
question = match.group(1)
|
22 |
+
elif 'Reference OCR token: ' in prompt and len(prompt.split('\n')) == 3:
|
23 |
+
if prompt.startswith('Reference OCR token:'):
|
24 |
+
question = prompt.split('\n')[1]
|
25 |
+
else:
|
26 |
+
question = prompt.split('\n')[0]
|
27 |
+
elif len(prompt.split('\n')) == 2:
|
28 |
+
question = prompt.split('\n')[0]
|
29 |
+
else:
|
30 |
+
assert False
|
31 |
+
|
32 |
+
return question.lower()
|
33 |
+
|
34 |
+
|
35 |
+
def eval_single(annotation_file, result_file):
|
36 |
+
experiment_name = os.path.splitext(os.path.basename(result_file))[0]
|
37 |
+
print(experiment_name)
|
38 |
+
annotations = json.load(open(annotation_file))['data']
|
39 |
+
annotations = {(annotation['image_id'], annotation['question'].lower()): annotation for annotation in annotations}
|
40 |
+
results = [json.loads(line) for line in open(result_file)]
|
41 |
+
|
42 |
+
pred_list = []
|
43 |
+
for result in results:
|
44 |
+
annotation = annotations[(result['question_id'], prompt_processor(result['prompt']))]
|
45 |
+
pred_list.append({
|
46 |
+
"pred_answer": result['text'],
|
47 |
+
"gt_answers": annotation['answers'],
|
48 |
+
})
|
49 |
+
|
50 |
+
evaluator = TextVQAAccuracyEvaluator()
|
51 |
+
print('Samples: {}\nAccuracy: {:.2f}%\n'.format(len(pred_list), 100. * evaluator.eval_pred_list(pred_list)))
|
52 |
+
|
53 |
+
|
54 |
+
if __name__ == "__main__":
|
55 |
+
args = get_args()
|
56 |
+
|
57 |
+
if args.result_file is not None:
|
58 |
+
eval_single(args.annotation_file, args.result_file)
|
59 |
+
|
60 |
+
if args.result_dir is not None:
|
61 |
+
for result_file in sorted(os.listdir(args.result_dir)):
|
62 |
+
if not result_file.endswith('.jsonl'):
|
63 |
+
print(f'Skipping {result_file}')
|
64 |
+
continue
|
65 |
+
eval_single(args.annotation_file, os.path.join(args.result_dir, result_file))
|
cumo/eval/extract_answer.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import time
|
4 |
+
import argparse
|
5 |
+
import json
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
import sys
|
9 |
+
sys.path.append('../')
|
10 |
+
#from utilities import *
|
11 |
+
|
12 |
+
# OpenAI
|
13 |
+
from openai import AzureOpenAI
|
14 |
+
|
15 |
+
client = AzureOpenAI(
|
16 |
+
api_version="2024-01-25",
|
17 |
+
api_key="input your own api key",
|
18 |
+
)
|
19 |
+
|
20 |
+
# load demo prompt
|
21 |
+
demo_prompt = """
|
22 |
+
Please read the following example. Then extract the answer from the model response and type it at the end of the prompt.
|
23 |
+
|
24 |
+
Hint: Please answer the question requiring an integer answer and provide the final value, e.g., 1, 2, 3, at the end.
|
25 |
+
Question: Which number is missing?
|
26 |
+
|
27 |
+
Model response: The number missing in the sequence is 14.
|
28 |
+
|
29 |
+
Extracted answer: 14
|
30 |
+
|
31 |
+
Hint: Please answer the question requiring a floating-point number with one decimal place and provide the final value, e.g., 1.2, 1.3, 1.4, at the end.
|
32 |
+
Question: What is the fraction of females facing the camera?
|
33 |
+
|
34 |
+
Model response: The fraction of females facing the camera is 0.6, which means that six out of ten females in the group are facing the camera.
|
35 |
+
|
36 |
+
Extracted answer: 0.6
|
37 |
+
|
38 |
+
Hint: Please answer the question requiring a floating-point number with two decimal places and provide the final value, e.g., 1.23, 1.34, 1.45, at the end.
|
39 |
+
Question: How much money does Luca need to buy a sour apple candy and a butterscotch candy? (Unit: $)
|
40 |
+
|
41 |
+
Model response: Luca needs $1.45 to buy a sour apple candy and a butterscotch candy.
|
42 |
+
|
43 |
+
Extracted answer: 1.45
|
44 |
+
|
45 |
+
Hint: Please answer the question requiring a Python list as an answer and provide the final list, e.g., [1, 2, 3], [1.2, 1.3, 1.4], at the end.
|
46 |
+
Question: Between which two years does the line graph saw its maximum peak?
|
47 |
+
|
48 |
+
Model response: The line graph saw its maximum peak between 2007 and 2008.
|
49 |
+
|
50 |
+
Extracted answer: [2007, 2008]
|
51 |
+
|
52 |
+
Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
|
53 |
+
Question: What fraction of the shape is blue?\nChoices:\n(A) 3/11\n(B) 8/11\n(C) 6/11\n(D) 3/5
|
54 |
+
|
55 |
+
Model response: The correct answer is (B) 8/11.
|
56 |
+
|
57 |
+
Extracted answer: B
|
58 |
+
"""
|
59 |
+
|
60 |
+
|
61 |
+
def read_json(path):
|
62 |
+
with open(path, 'r', encoding='utf-8') as f:
|
63 |
+
return json.load(f)
|
64 |
+
|
65 |
+
def save_json(data, path):
|
66 |
+
with open(path, 'w') as f:
|
67 |
+
json.dump(data, f, indent=4)
|
68 |
+
|
69 |
+
def get_chat_response_azure(promot, model="gpt-3.5-turbo", temperature=0, max_tokens=256, n=1, patience=10000000, sleep_time=0):
|
70 |
+
#messages = [
|
71 |
+
# {"role": "user", "content": promot},
|
72 |
+
#]
|
73 |
+
# print("I am here")
|
74 |
+
while patience > 0:
|
75 |
+
patience -= 1
|
76 |
+
try:
|
77 |
+
response = client.chat.completions.create(
|
78 |
+
model='gpt-3.5-turbo',
|
79 |
+
messages=[{
|
80 |
+
'role': 'system',
|
81 |
+
'content': 'You are a helpful and precis!ee assistant for checking the quality of the answer.'
|
82 |
+
}, {
|
83 |
+
'role': 'user',
|
84 |
+
'content': promot,
|
85 |
+
}],
|
86 |
+
temperature=temperature, # TODO: figure out which temperature is best for evaluation
|
87 |
+
max_tokens=max_tokens,
|
88 |
+
n=n
|
89 |
+
)
|
90 |
+
if n == 1:
|
91 |
+
prediction = response.choices[0].message.content.strip()
|
92 |
+
if prediction != "" and prediction != None:
|
93 |
+
return prediction
|
94 |
+
else:
|
95 |
+
prediction = [choice.message.content.strip() for choice in response.choices]
|
96 |
+
if prediction[0] != "" and prediction[0] != None:
|
97 |
+
return prediction
|
98 |
+
|
99 |
+
except Exception as e:
|
100 |
+
if "Rate limit" not in str(e):
|
101 |
+
print(e)
|
102 |
+
|
103 |
+
if "repetitive patterns" in str(e):
|
104 |
+
promot = re.sub(r'(.+?)\1+', r'\1', promot)
|
105 |
+
|
106 |
+
if "Please reduce the length of the messages" in str(e):
|
107 |
+
print("!!Reduce promot size")
|
108 |
+
# reduce input prompt and keep the tail
|
109 |
+
new_size = int(len(promot) * 0.9)
|
110 |
+
new_start = len(promot) - new_size
|
111 |
+
promot = promot[new_start:]
|
112 |
+
messages = [
|
113 |
+
{"role": "user", "content": promot},
|
114 |
+
]
|
115 |
+
|
116 |
+
if sleep_time > 0:
|
117 |
+
time.sleep(5)
|
118 |
+
time.sleep(1)
|
119 |
+
return ""
|
120 |
+
|
121 |
+
def verify_extraction(extraction):
|
122 |
+
extraction = extraction.strip()
|
123 |
+
if extraction == "" or extraction == None:
|
124 |
+
return False
|
125 |
+
return True
|
126 |
+
|
127 |
+
|
128 |
+
def create_test_prompt(demo_prompt, query, response):
|
129 |
+
demo_prompt = demo_prompt.strip()
|
130 |
+
test_prompt = f"{query}\n\n{response}"
|
131 |
+
full_prompt = f"{demo_prompt}\n\n{test_prompt}\n\nExtracted answer: "
|
132 |
+
return full_prompt
|
133 |
+
|
134 |
+
|
135 |
+
def extract_answer(response, problem, quick_extract=False):
|
136 |
+
question_type = problem['question_type']
|
137 |
+
answer_type = problem['answer_type']
|
138 |
+
choices = problem['choices']
|
139 |
+
query = problem['query']
|
140 |
+
pid = problem['pid']
|
141 |
+
|
142 |
+
if response == "":
|
143 |
+
return ""
|
144 |
+
|
145 |
+
if question_type == 'multi_choice' and response in choices:
|
146 |
+
return response
|
147 |
+
|
148 |
+
if answer_type == "integer":
|
149 |
+
try:
|
150 |
+
extraction = int(response)
|
151 |
+
return str(extraction)
|
152 |
+
except:
|
153 |
+
pass
|
154 |
+
|
155 |
+
if answer_type == "float":
|
156 |
+
try:
|
157 |
+
extraction = str(float(response))
|
158 |
+
return extraction
|
159 |
+
except:
|
160 |
+
pass
|
161 |
+
|
162 |
+
# quick extraction
|
163 |
+
if quick_extract:
|
164 |
+
print("Quickly extracting answer...")
|
165 |
+
# The answer is "text". -> "text"
|
166 |
+
try:
|
167 |
+
result = re.search(r'The answer is "(.*)"\.', response)
|
168 |
+
if result:
|
169 |
+
extraction = result.group(1)
|
170 |
+
return extraction
|
171 |
+
except:
|
172 |
+
pass
|
173 |
+
|
174 |
+
# general extraction
|
175 |
+
try:
|
176 |
+
full_prompt = create_test_prompt(demo_prompt, query, response)
|
177 |
+
extraction = get_chat_response_azure(full_prompt)
|
178 |
+
return extraction
|
179 |
+
except Exception as e:
|
180 |
+
print(e)
|
181 |
+
print(f"Error in extracting answer for {pid}")
|
182 |
+
|
183 |
+
return ""
|
184 |
+
|
185 |
+
|
186 |
+
if __name__ == '__main__':
|
187 |
+
parser = argparse.ArgumentParser()
|
188 |
+
# input
|
189 |
+
parser.add_argument('--output_dir', type=str, default='../results')
|
190 |
+
parser.add_argument('--output_file', type=str, default='answer.json')
|
191 |
+
parser.add_argument('--response_label', type=str, default='response', help='response label for the input file')
|
192 |
+
# model
|
193 |
+
parser.add_argument('--llm_engine', type=str, default='gpt-4-0613', help='llm engine',
|
194 |
+
choices = ['gpt-3.5-turbo', 'gpt-3.5', 'gpt-4', 'gpt-4-0314', 'gpt-4-0613'])
|
195 |
+
parser.add_argument('--number', type=int, default=-1, help='number of problems to run')
|
196 |
+
parser.add_argument('--quick_extract', action='store_true', help='use rules to extract answer for some problems')
|
197 |
+
parser.add_argument('--rerun', action='store_true', help='rerun the answer extraction')
|
198 |
+
# output
|
199 |
+
parser.add_argument('--save_every', type=int, default=100, help='save every n problems')
|
200 |
+
parser.add_argument('--output_label', type=str, default='', help='label for the output file')
|
201 |
+
args = parser.parse_args()
|
202 |
+
|
203 |
+
# args
|
204 |
+
#import pdb
|
205 |
+
#pdb.set_trace()
|
206 |
+
label = args.response_label
|
207 |
+
result_file = os.path.join(args.output_dir, args.output_file)
|
208 |
+
|
209 |
+
if args.output_label != '':
|
210 |
+
output_file = result_file.replace('.json', f'_{args.output_label}.json')
|
211 |
+
else:
|
212 |
+
output_file = result_file
|
213 |
+
|
214 |
+
# read results
|
215 |
+
print(f"Reading {result_file}...")
|
216 |
+
results = read_json(result_file)
|
217 |
+
|
218 |
+
# full pids
|
219 |
+
full_pids = list(results.keys())
|
220 |
+
if args.number > 0:
|
221 |
+
full_pids = full_pids[:min(args.number, len(full_pids))]
|
222 |
+
print("Number of testing problems:", len(full_pids))
|
223 |
+
|
224 |
+
# test pids
|
225 |
+
if args.rerun:
|
226 |
+
test_pids = full_pids
|
227 |
+
else:
|
228 |
+
test_pids = []
|
229 |
+
for pid in full_pids:
|
230 |
+
# print(pid)
|
231 |
+
if 'extraction' not in results[pid] or not verify_extraction(results[pid]['extraction']):
|
232 |
+
test_pids.append(pid)
|
233 |
+
|
234 |
+
test_num = len(test_pids)
|
235 |
+
print("Number of problems to run:", test_num)
|
236 |
+
# print(test_pids)
|
237 |
+
|
238 |
+
# tqdm, enumerate results
|
239 |
+
for i, pid in enumerate(tqdm(test_pids)):
|
240 |
+
problem = results[pid]
|
241 |
+
|
242 |
+
assert label in problem
|
243 |
+
response = problem[label]
|
244 |
+
|
245 |
+
|
246 |
+
extraction = extract_answer(response, problem, args.quick_extract)
|
247 |
+
results[pid]['extraction'] = extraction
|
248 |
+
|
249 |
+
if i % args.save_every == 0 or i == test_num - 1:
|
250 |
+
print(f"Saving results to {output_file}...")
|
251 |
+
save_json(results, output_file)
|
252 |
+
print(f"Results saved.")
|
cumo/eval/m4c_evaluator.py
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
import re
|
3 |
+
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
|
7 |
+
class EvalAIAnswerProcessor:
|
8 |
+
"""
|
9 |
+
Processes an answer similar to Eval AI
|
10 |
+
copied from
|
11 |
+
https://github.com/facebookresearch/mmf/blob/c46b3b3391275b4181567db80943473a89ab98ab/pythia/tasks/processors.py#L897
|
12 |
+
"""
|
13 |
+
|
14 |
+
CONTRACTIONS = {
|
15 |
+
"aint": "ain't",
|
16 |
+
"arent": "aren't",
|
17 |
+
"cant": "can't",
|
18 |
+
"couldve": "could've",
|
19 |
+
"couldnt": "couldn't",
|
20 |
+
"couldn'tve": "couldn't've",
|
21 |
+
"couldnt've": "couldn't've",
|
22 |
+
"didnt": "didn't",
|
23 |
+
"doesnt": "doesn't",
|
24 |
+
"dont": "don't",
|
25 |
+
"hadnt": "hadn't",
|
26 |
+
"hadnt've": "hadn't've",
|
27 |
+
"hadn'tve": "hadn't've",
|
28 |
+
"hasnt": "hasn't",
|
29 |
+
"havent": "haven't",
|
30 |
+
"hed": "he'd",
|
31 |
+
"hed've": "he'd've",
|
32 |
+
"he'dve": "he'd've",
|
33 |
+
"hes": "he's",
|
34 |
+
"howd": "how'd",
|
35 |
+
"howll": "how'll",
|
36 |
+
"hows": "how's",
|
37 |
+
"Id've": "I'd've",
|
38 |
+
"I'dve": "I'd've",
|
39 |
+
"Im": "I'm",
|
40 |
+
"Ive": "I've",
|
41 |
+
"isnt": "isn't",
|
42 |
+
"itd": "it'd",
|
43 |
+
"itd've": "it'd've",
|
44 |
+
"it'dve": "it'd've",
|
45 |
+
"itll": "it'll",
|
46 |
+
"let's": "let's",
|
47 |
+
"maam": "ma'am",
|
48 |
+
"mightnt": "mightn't",
|
49 |
+
"mightnt've": "mightn't've",
|
50 |
+
"mightn'tve": "mightn't've",
|
51 |
+
"mightve": "might've",
|
52 |
+
"mustnt": "mustn't",
|
53 |
+
"mustve": "must've",
|
54 |
+
"neednt": "needn't",
|
55 |
+
"notve": "not've",
|
56 |
+
"oclock": "o'clock",
|
57 |
+
"oughtnt": "oughtn't",
|
58 |
+
"ow's'at": "'ow's'at",
|
59 |
+
"'ows'at": "'ow's'at",
|
60 |
+
"'ow'sat": "'ow's'at",
|
61 |
+
"shant": "shan't",
|
62 |
+
"shed've": "she'd've",
|
63 |
+
"she'dve": "she'd've",
|
64 |
+
"she's": "she's",
|
65 |
+
"shouldve": "should've",
|
66 |
+
"shouldnt": "shouldn't",
|
67 |
+
"shouldnt've": "shouldn't've",
|
68 |
+
"shouldn'tve": "shouldn't've",
|
69 |
+
"somebody'd": "somebodyd",
|
70 |
+
"somebodyd've": "somebody'd've",
|
71 |
+
"somebody'dve": "somebody'd've",
|
72 |
+
"somebodyll": "somebody'll",
|
73 |
+
"somebodys": "somebody's",
|
74 |
+
"someoned": "someone'd",
|
75 |
+
"someoned've": "someone'd've",
|
76 |
+
"someone'dve": "someone'd've",
|
77 |
+
"someonell": "someone'll",
|
78 |
+
"someones": "someone's",
|
79 |
+
"somethingd": "something'd",
|
80 |
+
"somethingd've": "something'd've",
|
81 |
+
"something'dve": "something'd've",
|
82 |
+
"somethingll": "something'll",
|
83 |
+
"thats": "that's",
|
84 |
+
"thered": "there'd",
|
85 |
+
"thered've": "there'd've",
|
86 |
+
"there'dve": "there'd've",
|
87 |
+
"therere": "there're",
|
88 |
+
"theres": "there's",
|
89 |
+
"theyd": "they'd",
|
90 |
+
"theyd've": "they'd've",
|
91 |
+
"they'dve": "they'd've",
|
92 |
+
"theyll": "they'll",
|
93 |
+
"theyre": "they're",
|
94 |
+
"theyve": "they've",
|
95 |
+
"twas": "'twas",
|
96 |
+
"wasnt": "wasn't",
|
97 |
+
"wed've": "we'd've",
|
98 |
+
"we'dve": "we'd've",
|
99 |
+
"weve": "we've",
|
100 |
+
"werent": "weren't",
|
101 |
+
"whatll": "what'll",
|
102 |
+
"whatre": "what're",
|
103 |
+
"whats": "what's",
|
104 |
+
"whatve": "what've",
|
105 |
+
"whens": "when's",
|
106 |
+
"whered": "where'd",
|
107 |
+
"wheres": "where's",
|
108 |
+
"whereve": "where've",
|
109 |
+
"whod": "who'd",
|
110 |
+
"whod've": "who'd've",
|
111 |
+
"who'dve": "who'd've",
|
112 |
+
"wholl": "who'll",
|
113 |
+
"whos": "who's",
|
114 |
+
"whove": "who've",
|
115 |
+
"whyll": "why'll",
|
116 |
+
"whyre": "why're",
|
117 |
+
"whys": "why's",
|
118 |
+
"wont": "won't",
|
119 |
+
"wouldve": "would've",
|
120 |
+
"wouldnt": "wouldn't",
|
121 |
+
"wouldnt've": "wouldn't've",
|
122 |
+
"wouldn'tve": "wouldn't've",
|
123 |
+
"yall": "y'all",
|
124 |
+
"yall'll": "y'all'll",
|
125 |
+
"y'allll": "y'all'll",
|
126 |
+
"yall'd've": "y'all'd've",
|
127 |
+
"y'alld've": "y'all'd've",
|
128 |
+
"y'all'dve": "y'all'd've",
|
129 |
+
"youd": "you'd",
|
130 |
+
"youd've": "you'd've",
|
131 |
+
"you'dve": "you'd've",
|
132 |
+
"youll": "you'll",
|
133 |
+
"youre": "you're",
|
134 |
+
"youve": "you've",
|
135 |
+
}
|
136 |
+
|
137 |
+
NUMBER_MAP = {
|
138 |
+
"none": "0",
|
139 |
+
"zero": "0",
|
140 |
+
"one": "1",
|
141 |
+
"two": "2",
|
142 |
+
"three": "3",
|
143 |
+
"four": "4",
|
144 |
+
"five": "5",
|
145 |
+
"six": "6",
|
146 |
+
"seven": "7",
|
147 |
+
"eight": "8",
|
148 |
+
"nine": "9",
|
149 |
+
"ten": "10",
|
150 |
+
}
|
151 |
+
ARTICLES = ["a", "an", "the"]
|
152 |
+
PERIOD_STRIP = re.compile(r"(?!<=\d)(\.)(?!\d)")
|
153 |
+
COMMA_STRIP = re.compile(r"(?<=\d)(\,)+(?=\d)")
|
154 |
+
PUNCTUATIONS = [
|
155 |
+
";",
|
156 |
+
r"/",
|
157 |
+
"[",
|
158 |
+
"]",
|
159 |
+
'"',
|
160 |
+
"{",
|
161 |
+
"}",
|
162 |
+
"(",
|
163 |
+
")",
|
164 |
+
"=",
|
165 |
+
"+",
|
166 |
+
"\\",
|
167 |
+
"_",
|
168 |
+
"-",
|
169 |
+
">",
|
170 |
+
"<",
|
171 |
+
"@",
|
172 |
+
"`",
|
173 |
+
",",
|
174 |
+
"?",
|
175 |
+
"!",
|
176 |
+
]
|
177 |
+
|
178 |
+
def __init__(self, *args, **kwargs):
|
179 |
+
pass
|
180 |
+
|
181 |
+
def word_tokenize(self, word):
|
182 |
+
word = word.lower()
|
183 |
+
word = word.replace(",", "").replace("?", "").replace("'s", " 's")
|
184 |
+
return word.strip()
|
185 |
+
|
186 |
+
def process_punctuation(self, in_text):
|
187 |
+
out_text = in_text
|
188 |
+
for p in self.PUNCTUATIONS:
|
189 |
+
if (p + " " in in_text or " " + p in in_text) or (
|
190 |
+
re.search(self.COMMA_STRIP, in_text) is not None
|
191 |
+
):
|
192 |
+
out_text = out_text.replace(p, "")
|
193 |
+
else:
|
194 |
+
out_text = out_text.replace(p, " ")
|
195 |
+
out_text = self.PERIOD_STRIP.sub("", out_text, re.UNICODE)
|
196 |
+
return out_text
|
197 |
+
|
198 |
+
def process_digit_article(self, in_text):
|
199 |
+
out_text = []
|
200 |
+
temp_text = in_text.lower().split()
|
201 |
+
for word in temp_text:
|
202 |
+
word = self.NUMBER_MAP.setdefault(word, word)
|
203 |
+
if word not in self.ARTICLES:
|
204 |
+
out_text.append(word)
|
205 |
+
else:
|
206 |
+
pass
|
207 |
+
for word_id, word in enumerate(out_text):
|
208 |
+
if word in self.CONTRACTIONS:
|
209 |
+
out_text[word_id] = self.CONTRACTIONS[word]
|
210 |
+
out_text = " ".join(out_text)
|
211 |
+
return out_text
|
212 |
+
|
213 |
+
def __call__(self, item):
|
214 |
+
item = self.word_tokenize(item)
|
215 |
+
item = item.replace("\n", " ").replace("\t", " ").strip()
|
216 |
+
item = self.process_punctuation(item)
|
217 |
+
item = self.process_digit_article(item)
|
218 |
+
return item
|
219 |
+
|
220 |
+
|
221 |
+
class TextVQAAccuracyEvaluator:
|
222 |
+
def __init__(self):
|
223 |
+
self.answer_processor = EvalAIAnswerProcessor()
|
224 |
+
|
225 |
+
def _compute_answer_scores(self, raw_answers):
|
226 |
+
"""
|
227 |
+
compute the accuracy (soft score) of human answers
|
228 |
+
"""
|
229 |
+
answers = [self.answer_processor(a) for a in raw_answers]
|
230 |
+
assert len(answers) == 10
|
231 |
+
gt_answers = list(enumerate(answers))
|
232 |
+
unique_answers = set(answers)
|
233 |
+
unique_answer_scores = {}
|
234 |
+
|
235 |
+
for unique_answer in unique_answers:
|
236 |
+
accs = []
|
237 |
+
for gt_answer in gt_answers:
|
238 |
+
other_answers = [item for item in gt_answers if item != gt_answer]
|
239 |
+
matching_answers = [
|
240 |
+
item for item in other_answers if item[1] == unique_answer
|
241 |
+
]
|
242 |
+
acc = min(1, float(len(matching_answers)) / 3)
|
243 |
+
accs.append(acc)
|
244 |
+
unique_answer_scores[unique_answer] = sum(accs) / len(accs)
|
245 |
+
|
246 |
+
return unique_answer_scores
|
247 |
+
|
248 |
+
def eval_pred_list(self, pred_list):
|
249 |
+
pred_scores = []
|
250 |
+
for entry in tqdm(pred_list):
|
251 |
+
pred_answer = self.answer_processor(entry["pred_answer"])
|
252 |
+
unique_answer_scores = self._compute_answer_scores(entry["gt_answers"])
|
253 |
+
score = unique_answer_scores.get(pred_answer, 0.0)
|
254 |
+
pred_scores.append(score)
|
255 |
+
|
256 |
+
accuracy = sum(pred_scores) / len(pred_scores)
|
257 |
+
return accuracy
|
258 |
+
|
259 |
+
|
260 |
+
class STVQAAccuracyEvaluator:
|
261 |
+
def __init__(self):
|
262 |
+
self.answer_processor = EvalAIAnswerProcessor()
|
263 |
+
|
264 |
+
def eval_pred_list(self, pred_list):
|
265 |
+
pred_scores = []
|
266 |
+
for entry in pred_list:
|
267 |
+
pred_answer = self.answer_processor(entry["pred_answer"])
|
268 |
+
gts = [self.answer_processor(a) for a in entry["gt_answers"]]
|
269 |
+
score = 1.0 if pred_answer in gts else 0.0
|
270 |
+
pred_scores.append(score)
|
271 |
+
|
272 |
+
accuracy = sum(pred_scores) / len(pred_scores)
|
273 |
+
return accuracy
|
274 |
+
|
275 |
+
|
276 |
+
class STVQAANLSEvaluator:
|
277 |
+
def __init__(self):
|
278 |
+
import editdistance # install with `pip install editdistance`
|
279 |
+
|
280 |
+
self.get_edit_distance = editdistance.eval
|
281 |
+
|
282 |
+
def get_anls(self, s1, s2):
|
283 |
+
s1 = s1.lower().strip()
|
284 |
+
s2 = s2.lower().strip()
|
285 |
+
iou = 1 - self.get_edit_distance(s1, s2) / max(len(s1), len(s2))
|
286 |
+
anls = iou if iou >= 0.5 else 0.0
|
287 |
+
return anls
|
288 |
+
|
289 |
+
def eval_pred_list(self, pred_list):
|
290 |
+
pred_scores = []
|
291 |
+
for entry in pred_list:
|
292 |
+
anls = max(
|
293 |
+
self.get_anls(entry["pred_answer"], gt) for gt in entry["gt_answers"]
|
294 |
+
)
|
295 |
+
pred_scores.append(anls)
|
296 |
+
|
297 |
+
accuracy = sum(pred_scores) / len(pred_scores)
|
298 |
+
return accuracy
|
299 |
+
|
300 |
+
|
301 |
+
class TextCapsBleu4Evaluator:
|
302 |
+
def __init__(self):
|
303 |
+
# The following script requires Java 1.8.0 and pycocotools installed.
|
304 |
+
# The pycocoevalcap can be installed with pip as
|
305 |
+
# pip install git+https://github.com/ronghanghu/coco-caption.git@python23
|
306 |
+
# Original pycocoevalcap code is at https://github.com/tylin/coco-caption
|
307 |
+
# but has no python3 support yet.
|
308 |
+
try:
|
309 |
+
from pycocoevalcap.bleu.bleu import Bleu
|
310 |
+
from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer
|
311 |
+
except ModuleNotFoundError:
|
312 |
+
print(
|
313 |
+
"Please install pycocoevalcap module using "
|
314 |
+
"pip install git+https://github.com/ronghanghu/coco-caption.git@python23" # noqa
|
315 |
+
)
|
316 |
+
raise
|
317 |
+
|
318 |
+
self.tokenizer = PTBTokenizer()
|
319 |
+
self.scorer = Bleu(4)
|
320 |
+
|
321 |
+
def eval_pred_list(self, pred_list):
|
322 |
+
# Create reference and hypotheses captions.
|
323 |
+
gts = {}
|
324 |
+
res = {}
|
325 |
+
for idx, entry in enumerate(pred_list):
|
326 |
+
gts[idx] = [{"caption": a} for a in entry["gt_answers"]]
|
327 |
+
res[idx] = [{"caption": entry["pred_answer"]}]
|
328 |
+
|
329 |
+
gts = self.tokenizer.tokenize(gts)
|
330 |
+
res = self.tokenizer.tokenize(res)
|
331 |
+
score, _ = self.scorer.compute_score(gts, res)
|
332 |
+
|
333 |
+
bleu4 = score[3] # score is (Bleu-1, Bleu-2, Bleu-3, Bleu-4)
|
334 |
+
return bleu4
|
cumo/eval/main_eval_only.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Parse and Evalate"""
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
|
5 |
+
from argparse import ArgumentParser
|
6 |
+
|
7 |
+
from cumo.eval.mmmu_utils.data_utils import save_json, CAT_SHORT2LONG, DOMAIN_CAT2SUB_CAT
|
8 |
+
from cumo.eval.mmmu_utils.eval_utils import evaluate, parse_multi_choice_response, parse_open_response, calculate_ins_level_acc
|
9 |
+
|
10 |
+
|
11 |
+
if __name__ == '__main__':
|
12 |
+
|
13 |
+
parser = ArgumentParser()
|
14 |
+
parser.add_argument('--output_path', type=str, default="./example_outputs/qwen_vl/total_val_output.json", help="The path to model output file.")
|
15 |
+
parser.add_argument('--answer_path', type=str, default="./eval/answer_dict_val.json", help="Answer file path.")
|
16 |
+
args = parser.parse_args()
|
17 |
+
|
18 |
+
output_dict = json.load(open(args.output_path))
|
19 |
+
answer_dict = json.load(open(args.answer_path))
|
20 |
+
|
21 |
+
# group by category
|
22 |
+
output_dict_w_cat = {}
|
23 |
+
for data_id, parsed_pred in output_dict.items():
|
24 |
+
category = "_".join(data_id.split("_")[1:-1])
|
25 |
+
if category not in output_dict_w_cat:
|
26 |
+
output_dict_w_cat.update({category: {}})
|
27 |
+
output_dict_w_cat[category].update({data_id: parsed_pred})
|
28 |
+
|
29 |
+
# group by category
|
30 |
+
answer_dict_w_cat = {}
|
31 |
+
for data_id, parsed_pred in answer_dict.items():
|
32 |
+
category = "_".join(data_id.split("_")[1:-1])
|
33 |
+
if category not in answer_dict_w_cat:
|
34 |
+
answer_dict_w_cat.update({category: {}})
|
35 |
+
answer_dict_w_cat[category].update({data_id: parsed_pred})
|
36 |
+
|
37 |
+
evaluation_result = {}
|
38 |
+
|
39 |
+
for category in CAT_SHORT2LONG.values():
|
40 |
+
print("Evaluating: {}".format(category))
|
41 |
+
# get cat_outputs and cat_answers
|
42 |
+
try:
|
43 |
+
cat_outputs = output_dict_w_cat[category]
|
44 |
+
cat_answers = answer_dict_w_cat[category]
|
45 |
+
except KeyError:
|
46 |
+
print("Skipping {} for not found".format(category))
|
47 |
+
continue
|
48 |
+
|
49 |
+
exampels_to_eval = []
|
50 |
+
for data_id, parsed_pred in cat_outputs.items():
|
51 |
+
question_type = cat_answers[data_id]['question_type']
|
52 |
+
if question_type != 'multiple-choice':
|
53 |
+
parsed_pred = parse_open_response(parsed_pred) # mainly for type consistency (make it number, etc.)
|
54 |
+
else:
|
55 |
+
parsed_pred = parsed_pred
|
56 |
+
|
57 |
+
exampels_to_eval.append({
|
58 |
+
"id": data_id,
|
59 |
+
"question_type": question_type,
|
60 |
+
"answer": cat_answers[data_id]['ground_truth'],
|
61 |
+
"parsed_pred": parsed_pred
|
62 |
+
})
|
63 |
+
|
64 |
+
judge_dict, metric_dict = evaluate(exampels_to_eval)
|
65 |
+
metric_dict.update({"num_example": len(exampels_to_eval)})
|
66 |
+
|
67 |
+
evaluation_result[category] = metric_dict
|
68 |
+
|
69 |
+
printable_results = {}
|
70 |
+
# add domain Subject
|
71 |
+
for domain, in_domain_cats in DOMAIN_CAT2SUB_CAT.items():
|
72 |
+
in_domain_cat_results = {}
|
73 |
+
for cat_name in in_domain_cats: # use the order in DOMAIN_CAT2SUB_CAT
|
74 |
+
if cat_name in evaluation_result.keys():
|
75 |
+
in_domain_cat_results[cat_name] = evaluation_result[cat_name]
|
76 |
+
else:
|
77 |
+
pass
|
78 |
+
in_domain_ins_acc = calculate_ins_level_acc(in_domain_cat_results)
|
79 |
+
in_domain_data_num = sum([cat_results['num_example'] for cat_results in in_domain_cat_results.values()])
|
80 |
+
printable_results['Overall-' + domain] = {"num": int(in_domain_data_num),
|
81 |
+
"acc": round(in_domain_ins_acc, 3)
|
82 |
+
}
|
83 |
+
# add sub category
|
84 |
+
for cat_name, cat_results in in_domain_cat_results.items():
|
85 |
+
printable_results[cat_name] = {"num": int(cat_results['num_example']),
|
86 |
+
"acc": round(cat_results['acc'], 3)
|
87 |
+
}
|
88 |
+
|
89 |
+
# table.append(["-----------------------------", "-----", "----"])
|
90 |
+
all_ins_acc = calculate_ins_level_acc(evaluation_result)
|
91 |
+
printable_results['Overall'] = {"num": sum([cat_results['num_example'] for cat_results in evaluation_result.values()]),
|
92 |
+
"acc": round(all_ins_acc, 3)
|
93 |
+
}
|
94 |
+
|
95 |
+
print(printable_results)
|
96 |
+
|
cumo/eval/mmmu_utils/data_utils.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utils for data load, save, and process (e.g., prompt construction)"""
|
2 |
+
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import yaml
|
6 |
+
import re
|
7 |
+
|
8 |
+
|
9 |
+
DOMAIN_CAT2SUB_CAT = {
|
10 |
+
'Art and Design': ['Art', 'Art_Theory', 'Design', 'Music'],
|
11 |
+
'Business': ['Accounting', 'Economics', 'Finance', 'Manage','Marketing'],
|
12 |
+
'Science': ['Biology', 'Chemistry', 'Geography', 'Math', 'Physics',],
|
13 |
+
'Health and Medicine': ['Basic_Medical_Science', 'Clinical_Medicine', 'Diagnostics_and_Laboratory_Medicine', 'Pharmacy', 'Public_Health'],
|
14 |
+
'Humanities and Social Science': ['History', 'Literature', 'Sociology', 'Psychology'],
|
15 |
+
'Tech and Engineering': ['Agriculture', 'Architecture_and_Engineering', 'Computer_Science', 'Electronics', 'Energy_and_Power', 'Materials', 'Mechanical_Engineering'],
|
16 |
+
}
|
17 |
+
|
18 |
+
|
19 |
+
CAT_SHORT2LONG = {
|
20 |
+
'acc': 'Accounting',
|
21 |
+
'agri': 'Agriculture',
|
22 |
+
'arch': 'Architecture_and_Engineering',
|
23 |
+
'art': 'Art',
|
24 |
+
'art_theory': 'Art_Theory',
|
25 |
+
'bas_med': 'Basic_Medical_Science',
|
26 |
+
'bio': 'Biology',
|
27 |
+
'chem': 'Chemistry',
|
28 |
+
'cli_med': 'Clinical_Medicine',
|
29 |
+
'cs': 'Computer_Science',
|
30 |
+
'design': 'Design',
|
31 |
+
'diag_med': 'Diagnostics_and_Laboratory_Medicine',
|
32 |
+
'econ': 'Economics',
|
33 |
+
'elec': 'Electronics',
|
34 |
+
'ep': 'Energy_and_Power',
|
35 |
+
'fin': 'Finance',
|
36 |
+
'geo': 'Geography',
|
37 |
+
'his': 'History',
|
38 |
+
'liter': 'Literature',
|
39 |
+
'manage': 'Manage',
|
40 |
+
'mark': 'Marketing',
|
41 |
+
'mate': 'Materials',
|
42 |
+
'math': 'Math',
|
43 |
+
'mech': 'Mechanical_Engineering',
|
44 |
+
'music': 'Music',
|
45 |
+
'phar': 'Pharmacy',
|
46 |
+
'phys': 'Physics',
|
47 |
+
'psy': 'Psychology',
|
48 |
+
'pub_health': 'Public_Health',
|
49 |
+
'socio': 'Sociology'
|
50 |
+
}
|
51 |
+
|
52 |
+
# DATA SAVING
|
53 |
+
def save_json(filename, ds):
|
54 |
+
with open(filename, 'w') as f:
|
55 |
+
json.dump(ds, f, indent=4)
|
56 |
+
|
57 |
+
|
58 |
+
def get_multi_choice_info(options):
|
59 |
+
"""
|
60 |
+
Given the list of options for multiple choice question
|
61 |
+
Return the index2ans and all_choices
|
62 |
+
"""
|
63 |
+
|
64 |
+
start_chr = 'A'
|
65 |
+
all_choices = []
|
66 |
+
index2ans = {}
|
67 |
+
for i, option in enumerate(options):
|
68 |
+
index2ans[chr(ord(start_chr) + i)] = option
|
69 |
+
all_choices.append(chr(ord(start_chr) + i))
|
70 |
+
|
71 |
+
return index2ans, all_choices
|
72 |
+
|
73 |
+
def load_yaml(file_path):
|
74 |
+
with open(file_path, 'r') as stream:
|
75 |
+
try:
|
76 |
+
yaml_dict = yaml.safe_load(stream)
|
77 |
+
except yaml.YAMLError as exc:
|
78 |
+
print(exc)
|
79 |
+
|
80 |
+
return yaml_dict
|
81 |
+
|
82 |
+
|
83 |
+
def parse_img_path(text):
|
84 |
+
matches = re.findall("<img='(.*?)'>", text)
|
85 |
+
return matches
|
86 |
+
|
87 |
+
def process_single_sample(data):
|
88 |
+
question = data['question']
|
89 |
+
o_imgs_paths = []
|
90 |
+
for option in data['options']:
|
91 |
+
current_o_imgs_paths = parse_img_path(option)
|
92 |
+
for img_path in current_o_imgs_paths:
|
93 |
+
o_imgs_paths.append(img_path)
|
94 |
+
|
95 |
+
if len(o_imgs_paths) > 1: # multiple images in options, used for random selection
|
96 |
+
return {'id': data['id'], 'question': question, 'options': data['options'], 'answer': data['answer'],
|
97 |
+
'image': None, 'question_type': data['question_type']}
|
98 |
+
else:
|
99 |
+
return {'id': data['id'], 'question': question, 'options': data['options'], 'answer': data['answer'],
|
100 |
+
'image': data['image_1'], 'question_type': data['question_type']}
|
101 |
+
|
102 |
+
|
103 |
+
# DATA SAVING
|
104 |
+
def save_json(filename, ds):
|
105 |
+
with open(filename, 'w') as f:
|
106 |
+
json.dump(ds, f, indent=4)
|
107 |
+
|
108 |
+
def save_jsonl(filename, data):
|
109 |
+
"""
|
110 |
+
Save a dictionary of data to a JSON Lines file with the filename as key and caption as value.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
filename (str): The path to the file where the data should be saved.
|
114 |
+
data (dict): The dictionary containing the data to save where key is the image path and value is the caption.
|
115 |
+
"""
|
116 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
117 |
+
for img_path, caption in data.items():
|
118 |
+
# Extract the base filename without the extension
|
119 |
+
base_filename = os.path.basename(img_path)
|
120 |
+
# Create a JSON object with the filename as the key and caption as the value
|
121 |
+
json_record = json.dumps({base_filename: caption}, ensure_ascii=False)
|
122 |
+
# Write the JSON object to the file, one per line
|
123 |
+
f.write(json_record + '\n')
|
124 |
+
|
125 |
+
def save_args(args, path_dir):
|
126 |
+
argsDict = args.__dict__
|
127 |
+
with open(path_dir + 'setting.txt', 'w') as f:
|
128 |
+
f.writelines('------------------ start ------------------' + '\n')
|
129 |
+
for eachArg, value in argsDict.items():
|
130 |
+
f.writelines(eachArg + ' : ' + str(value) + '\n')
|
131 |
+
f.writelines('------------------- end -------------------')
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
# DATA PROCESSING
|
136 |
+
def construct_prompt(sample, config):
|
137 |
+
question = sample['question']
|
138 |
+
options = eval(sample['options'])
|
139 |
+
example = ""
|
140 |
+
if sample['question_type'] == 'multiple-choice':
|
141 |
+
start_chr = 'A'
|
142 |
+
prediction_range = []
|
143 |
+
index2ans = {}
|
144 |
+
for option in options:
|
145 |
+
prediction_range.append(start_chr)
|
146 |
+
example += f"({start_chr}) {option}\n"
|
147 |
+
index2ans[start_chr] = option
|
148 |
+
start_chr = chr(ord(start_chr) + 1)
|
149 |
+
empty_prompt_sample_structure = config['multi_choice_example_format']
|
150 |
+
empty_prompt = empty_prompt_sample_structure.format(question, example)
|
151 |
+
res_dict = {}
|
152 |
+
res_dict['index2ans'] = index2ans
|
153 |
+
res_dict['correct_choice'] = sample['answer']
|
154 |
+
res_dict['all_choices'] = prediction_range
|
155 |
+
res_dict['empty_prompt'] = empty_prompt
|
156 |
+
if config['task_instructions']:
|
157 |
+
res_dict['final_input_prompt'] = config['task_instructions'].strip() + '\n\n' + empty_prompt
|
158 |
+
else:
|
159 |
+
res_dict['final_input_prompt'] = empty_prompt
|
160 |
+
|
161 |
+
res_dict['gt_content'] = options[ord(sample['answer'].upper()) - ord('A')]
|
162 |
+
else:
|
163 |
+
empty_prompt_sample_structure = config['short_ans_example_format']
|
164 |
+
empty_prompt = empty_prompt_sample_structure.format(question)
|
165 |
+
res_dict = {}
|
166 |
+
res_dict['empty_prompt'] = empty_prompt
|
167 |
+
if config['task_instructions']:
|
168 |
+
res_dict['final_input_prompt'] = config['task_instructions'].strip() + '\n\n' + empty_prompt
|
169 |
+
else:
|
170 |
+
res_dict['final_input_prompt'] = empty_prompt
|
171 |
+
res_dict['gt_content'] = sample['answer']
|
172 |
+
|
173 |
+
res_dict.update(sample)
|
174 |
+
return res_dict
|
cumo/eval/mmmu_utils/eval_utils.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Response Parsing and Evaluation for various models"""
|
2 |
+
from typing import Dict
|
3 |
+
|
4 |
+
import re
|
5 |
+
import random
|
6 |
+
random.seed(42)
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# ----------- Process Multi-choice -------------
|
10 |
+
def parse_multi_choice_response(response, all_choices, index2ans):
|
11 |
+
"""
|
12 |
+
Parse the prediction from the generated response.
|
13 |
+
Return the predicted index e.g., A, B, C, D.
|
14 |
+
"""
|
15 |
+
for char in [',', '.', '!', '?', ';', ':', "'"]:
|
16 |
+
response = response.strip(char)
|
17 |
+
response = " " + response + " " # add space to avoid partial match
|
18 |
+
|
19 |
+
index_ans = True
|
20 |
+
ans_with_brack = False
|
21 |
+
candidates = []
|
22 |
+
for choice in all_choices: # e.g., (A) (B) (C) (D)
|
23 |
+
if f'({choice})' in response:
|
24 |
+
candidates.append(choice)
|
25 |
+
ans_with_brack = True
|
26 |
+
|
27 |
+
if len(candidates) == 0:
|
28 |
+
for choice in all_choices: # e.g., A B C D
|
29 |
+
if f' {choice} ' in response:
|
30 |
+
candidates.append(choice)
|
31 |
+
|
32 |
+
# if all above doesn't get candidates, check if the content is larger than 5 tokens and try to parse the example
|
33 |
+
if len(candidates) == 0 and len(response.split()) > 5:
|
34 |
+
for index, ans in index2ans.items():
|
35 |
+
if ans.lower() in response.lower():
|
36 |
+
candidates.append(index)
|
37 |
+
index_ans = False # it's content ans.
|
38 |
+
|
39 |
+
if len(candidates) == 0: # still not get answer, randomly choose one.
|
40 |
+
pred_index = random.choice(all_choices)
|
41 |
+
elif len(candidates) > 1:
|
42 |
+
start_indexes = []
|
43 |
+
if index_ans:
|
44 |
+
if ans_with_brack:
|
45 |
+
for can in candidates:
|
46 |
+
index = response.rfind(f'({can})')
|
47 |
+
start_indexes.append(index) # -1 will be ignored anyway
|
48 |
+
# start_indexes = [generated_response.index(f'({can})') for can in candidates]
|
49 |
+
else:
|
50 |
+
for can in candidates:
|
51 |
+
index = response.rfind(f" {can} ")
|
52 |
+
start_indexes.append(index)
|
53 |
+
else:
|
54 |
+
for can in candidates:
|
55 |
+
index = response.lower().rfind(index2ans[can].lower())
|
56 |
+
start_indexes.append(index)
|
57 |
+
# get the last one
|
58 |
+
pred_index = candidates[np.argmax(start_indexes)]
|
59 |
+
else: # if only one candidate, use it.
|
60 |
+
pred_index = candidates[0]
|
61 |
+
|
62 |
+
return pred_index
|
63 |
+
|
64 |
+
# ----------- Process Open -------------
|
65 |
+
def check_is_number(string):
|
66 |
+
"""
|
67 |
+
Check if the given string a number.
|
68 |
+
"""
|
69 |
+
try:
|
70 |
+
float(string.replace(',', ''))
|
71 |
+
return True
|
72 |
+
except ValueError:
|
73 |
+
# check if there's comma inside
|
74 |
+
return False
|
75 |
+
|
76 |
+
def normalize_str(string):
|
77 |
+
"""
|
78 |
+
Normalize the str to lower case and make them float numbers if possible.
|
79 |
+
"""
|
80 |
+
# check if characters in the string
|
81 |
+
|
82 |
+
# if number, numerize it.
|
83 |
+
string = string.strip()
|
84 |
+
|
85 |
+
is_number = check_is_number(string)
|
86 |
+
|
87 |
+
if is_number:
|
88 |
+
string = string.replace(',', '')
|
89 |
+
string = float(string)
|
90 |
+
# leave 2 decimal
|
91 |
+
string = round(string, 2)
|
92 |
+
return [string]
|
93 |
+
else: # it's likely to be a string
|
94 |
+
# lower it
|
95 |
+
string = string.lower()
|
96 |
+
if len(string) == 1:
|
97 |
+
return [" " + string, string + " "] # avoid trivial matches
|
98 |
+
return [string]
|
99 |
+
|
100 |
+
def extract_numbers(string):
|
101 |
+
"""
|
102 |
+
Exact all forms of numbers from a string with regex.
|
103 |
+
"""
|
104 |
+
# Pattern for numbers with commas
|
105 |
+
pattern_commas = r'-?\b\d{1,3}(?:,\d{3})+\b'
|
106 |
+
# Pattern for scientific notation
|
107 |
+
pattern_scientific = r'-?\d+(?:\.\d+)?[eE][+-]?\d+'
|
108 |
+
# Pattern for simple numbers without commas
|
109 |
+
pattern_simple = r'-?(?:\d+\.\d+|\.\d+|\d+\b)(?![eE][+-]?\d+)(?![,\d])'
|
110 |
+
|
111 |
+
# Extract numbers with commas
|
112 |
+
numbers_with_commas = re.findall(pattern_commas, string)
|
113 |
+
# Extract numbers in scientific notation
|
114 |
+
numbers_scientific = re.findall(pattern_scientific, string)
|
115 |
+
# Extract simple numbers without commas
|
116 |
+
numbers_simple = re.findall(pattern_simple, string)
|
117 |
+
|
118 |
+
# Combine all extracted numbers
|
119 |
+
all_numbers = numbers_with_commas + numbers_scientific + numbers_simple
|
120 |
+
return all_numbers
|
121 |
+
|
122 |
+
def parse_open_response(response):
|
123 |
+
"""
|
124 |
+
Parse the prediction from the generated response.
|
125 |
+
Return a list of predicted strings or numbers.
|
126 |
+
"""
|
127 |
+
# content = content.strip("\n").strip(".").strip(" ")
|
128 |
+
def get_key_subresponses(response):
|
129 |
+
key_responses = []
|
130 |
+
response = response.strip().strip(".").lower()
|
131 |
+
sub_responses = re.split(r'\.\s(?=[A-Z])|\n', response)
|
132 |
+
indicators_of_keys = ['could be ', 'so ', 'is ',
|
133 |
+
'thus ', 'therefore ', 'final ', 'answer ', 'result ']
|
134 |
+
key_responses = []
|
135 |
+
for index, resp in enumerate(sub_responses):
|
136 |
+
# if last one, accept it's an equation (the entire response can be just one sentence with equation)
|
137 |
+
if index == len(sub_responses) - 1:
|
138 |
+
indicators_of_keys.extend(['='])
|
139 |
+
shortest_key_response = None # the shortest response that may contain the answer (tail part of the response)
|
140 |
+
for indicator in indicators_of_keys:
|
141 |
+
if indicator in resp:
|
142 |
+
if not shortest_key_response:
|
143 |
+
shortest_key_response = resp.split(indicator)[-1].strip()
|
144 |
+
else:
|
145 |
+
if len(resp.split(indicator)[-1].strip()) < len(shortest_key_response):
|
146 |
+
shortest_key_response = resp.split(indicator)[-1].strip()
|
147 |
+
# key_responses.append(resp.split(indicator)[1].strip())
|
148 |
+
|
149 |
+
if shortest_key_response:
|
150 |
+
# and it's not trivial
|
151 |
+
if shortest_key_response.strip() not in [":", ",", ".", "!", "?", ";", ":", "'"]:
|
152 |
+
key_responses.append(shortest_key_response)
|
153 |
+
if len(key_responses) == 0: # did not found any
|
154 |
+
return [response]
|
155 |
+
return key_responses
|
156 |
+
key_responses = get_key_subresponses(response)
|
157 |
+
|
158 |
+
pred_list = key_responses.copy() # keep the original string response
|
159 |
+
for resp in key_responses:
|
160 |
+
pred_list.extend(extract_numbers(resp))
|
161 |
+
|
162 |
+
tmp_pred_list = []
|
163 |
+
for i in range(len(pred_list)):
|
164 |
+
tmp_pred_list.extend(normalize_str(pred_list[i]))
|
165 |
+
pred_list = tmp_pred_list
|
166 |
+
|
167 |
+
# remove duplicates
|
168 |
+
pred_list = list(set(pred_list))
|
169 |
+
|
170 |
+
return pred_list
|
171 |
+
|
172 |
+
# ----------- Evaluation -------------
|
173 |
+
|
174 |
+
def eval_multi_choice(gold_i, pred_i):
|
175 |
+
"""
|
176 |
+
Evaluate a multiple choice instance.
|
177 |
+
"""
|
178 |
+
correct = False
|
179 |
+
# only they are exactly the same, we consider it as correct
|
180 |
+
if isinstance(gold_i, list):
|
181 |
+
for answer in gold_i:
|
182 |
+
if answer == pred_i:
|
183 |
+
correct = True
|
184 |
+
break
|
185 |
+
else: # gold_i is a string
|
186 |
+
if gold_i == pred_i:
|
187 |
+
correct = True
|
188 |
+
return correct
|
189 |
+
|
190 |
+
def eval_open(gold_i, pred_i):
|
191 |
+
"""
|
192 |
+
Evaluate an open question instance
|
193 |
+
"""
|
194 |
+
correct = False
|
195 |
+
if isinstance(gold_i, list):
|
196 |
+
# use float to avoid trivial matches
|
197 |
+
norm_answers = []
|
198 |
+
for answer in gold_i:
|
199 |
+
norm_answers.extend(normalize_str(answer))
|
200 |
+
else:
|
201 |
+
norm_answers = normalize_str(gold_i)
|
202 |
+
for pred in pred_i: # pred is already normalized in parse response phase
|
203 |
+
if isinstance(pred, str): # if it's a string, then find if ans in the pred_i
|
204 |
+
for norm_ans in norm_answers:
|
205 |
+
# only see if the string answer in the string pred
|
206 |
+
if isinstance(norm_ans, str) and norm_ans in pred:
|
207 |
+
if not correct:
|
208 |
+
correct = True
|
209 |
+
break
|
210 |
+
else: # it's a float number
|
211 |
+
if pred in norm_answers:
|
212 |
+
if not correct:
|
213 |
+
correct = True
|
214 |
+
break
|
215 |
+
return correct
|
216 |
+
|
217 |
+
# ----------- Batch Evaluation -------------
|
218 |
+
def evaluate(samples):
|
219 |
+
"""
|
220 |
+
Batch evaluation for multiple choice and open questions.
|
221 |
+
"""
|
222 |
+
pred_correct = 0
|
223 |
+
judge_dict = dict()
|
224 |
+
for sample in samples:
|
225 |
+
gold_i = sample['answer']
|
226 |
+
pred_i = sample['parsed_pred']
|
227 |
+
if sample['question_type'] == 'multiple-choice':
|
228 |
+
correct = eval_multi_choice(gold_i, pred_i)
|
229 |
+
else: # open question
|
230 |
+
correct = eval_open(gold_i, pred_i)
|
231 |
+
|
232 |
+
if correct:
|
233 |
+
judge_dict[sample['id']] = 'Correct'
|
234 |
+
pred_correct += 1
|
235 |
+
else:
|
236 |
+
judge_dict[sample['id']] = 'Wrong'
|
237 |
+
|
238 |
+
if len(samples) == 0:
|
239 |
+
return {'acc': 0}
|
240 |
+
return judge_dict, {'acc': pred_correct / len(samples)}
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
# ----------- Calculate Accuracy -------------
|
245 |
+
def calculate_ins_level_acc(results: Dict):
|
246 |
+
"""Calculate the instruction level accuracy for given Subject results"""
|
247 |
+
acc = 0
|
248 |
+
ins_num = 0
|
249 |
+
for cat_results in results.values():
|
250 |
+
acc += cat_results['acc'] * cat_results['num_example']
|
251 |
+
ins_num += cat_results['num_example']
|
252 |
+
if ins_num == 0:
|
253 |
+
return 0
|
254 |
+
return acc / ins_num
|
255 |
+
|
cumo/eval/model_qa.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
import json
|
6 |
+
from tqdm import tqdm
|
7 |
+
import shortuuid
|
8 |
+
|
9 |
+
from cumo.conversation import default_conversation
|
10 |
+
from cumo.utils import disable_torch_init
|
11 |
+
|
12 |
+
|
13 |
+
@torch.inference_mode()
|
14 |
+
def eval_model(model_name, questions_file, answers_file):
|
15 |
+
# Model
|
16 |
+
disable_torch_init()
|
17 |
+
model_name = os.path.expanduser(model_name)
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(model_name,
|
20 |
+
torch_dtype=torch.float16).cuda()
|
21 |
+
|
22 |
+
|
23 |
+
ques_file = open(os.path.expanduser(questions_file), "r")
|
24 |
+
ans_file = open(os.path.expanduser(answers_file), "w")
|
25 |
+
for i, line in enumerate(tqdm(ques_file)):
|
26 |
+
idx = json.loads(line)["question_id"]
|
27 |
+
qs = json.loads(line)["text"]
|
28 |
+
cat = json.loads(line)["category"]
|
29 |
+
conv = default_conversation.copy()
|
30 |
+
conv.append_message(conv.roles[0], qs)
|
31 |
+
prompt = conv.get_prompt()
|
32 |
+
inputs = tokenizer([prompt])
|
33 |
+
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
34 |
+
output_ids = model.generate(
|
35 |
+
input_ids,
|
36 |
+
do_sample=True,
|
37 |
+
use_cache=True,
|
38 |
+
temperature=0.7,
|
39 |
+
max_new_tokens=1024,)
|
40 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
41 |
+
try:
|
42 |
+
index = outputs.index(conv.sep, len(prompt))
|
43 |
+
except ValueError:
|
44 |
+
outputs += conv.sep
|
45 |
+
index = outputs.index(conv.sep, len(prompt))
|
46 |
+
|
47 |
+
outputs = outputs[len(prompt) + len(conv.roles[1]) + 2:index].strip()
|
48 |
+
ans_id = shortuuid.uuid()
|
49 |
+
ans_file.write(json.dumps({"question_id": idx,
|
50 |
+
"text": outputs,
|
51 |
+
"answer_id": ans_id,
|
52 |
+
"model_id": model_name,
|
53 |
+
"metadata": {}}) + "\n")
|
54 |
+
ans_file.flush()
|
55 |
+
ans_file.close()
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
parser = argparse.ArgumentParser()
|
59 |
+
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
|
60 |
+
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
61 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
62 |
+
args = parser.parse_args()
|
63 |
+
|
64 |
+
eval_model(args.model_name, args.question_file, args.answers_file)
|
cumo/eval/model_vqa.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
from tqdm import tqdm
|
6 |
+
import shortuuid
|
7 |
+
|
8 |
+
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
9 |
+
from cumo.conversation import conv_templates, SeparatorStyle
|
10 |
+
from cumo.model.builder import load_pretrained_model
|
11 |
+
from cumo.utils import disable_torch_init
|
12 |
+
from cumo.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
|
13 |
+
|
14 |
+
from PIL import Image
|
15 |
+
import math
|
16 |
+
|
17 |
+
|
18 |
+
def split_list(lst, n):
|
19 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
20 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
21 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
22 |
+
|
23 |
+
|
24 |
+
def get_chunk(lst, n, k):
|
25 |
+
chunks = split_list(lst, n)
|
26 |
+
return chunks[k]
|
27 |
+
|
28 |
+
|
29 |
+
def eval_model(args):
|
30 |
+
# Model
|
31 |
+
disable_torch_init()
|
32 |
+
model_path = os.path.expanduser(args.model_path)
|
33 |
+
model_name = get_model_name_from_path(model_path)
|
34 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
35 |
+
model.config.training = False
|
36 |
+
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
|
37 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
38 |
+
answers_file = os.path.expanduser(args.answers_file)
|
39 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
40 |
+
ans_file = open(answers_file, "w")
|
41 |
+
for line in tqdm(questions):
|
42 |
+
idx = line["question_id"]
|
43 |
+
image_file = line["image"]
|
44 |
+
qs = line["text"]
|
45 |
+
cur_prompt = qs
|
46 |
+
if model.config.mm_use_im_start_end:
|
47 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
48 |
+
else:
|
49 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
50 |
+
|
51 |
+
conv = conv_templates[args.conv_mode].copy()
|
52 |
+
conv.append_message(conv.roles[0], qs)
|
53 |
+
conv.append_message(conv.roles[1], None)
|
54 |
+
prompt = conv.get_prompt()
|
55 |
+
|
56 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
57 |
+
|
58 |
+
image = Image.open(os.path.join(args.image_folder, image_file)).convert('RGB')
|
59 |
+
image_tensor = process_images([image], image_processor, model.config)[0]
|
60 |
+
|
61 |
+
with torch.inference_mode():
|
62 |
+
output_ids = model.generate(
|
63 |
+
input_ids,
|
64 |
+
images=image_tensor.unsqueeze(0).half().cuda(),
|
65 |
+
image_sizes=[image.size],
|
66 |
+
do_sample=True if args.temperature > 0 else False,
|
67 |
+
#temperature=args.temperature,
|
68 |
+
#top_p=args.top_p,
|
69 |
+
num_beams=args.num_beams,
|
70 |
+
# no_repeat_ngram_size=3,
|
71 |
+
max_new_tokens=1024,
|
72 |
+
pad_token_id=tokenizer.eos_token_id,
|
73 |
+
use_cache=True)
|
74 |
+
|
75 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
76 |
+
|
77 |
+
ans_id = shortuuid.uuid()
|
78 |
+
ans_file.write(json.dumps({"question_id": idx,
|
79 |
+
"prompt": cur_prompt,
|
80 |
+
"text": outputs,
|
81 |
+
"answer_id": ans_id,
|
82 |
+
"model_id": model_name,
|
83 |
+
"metadata": {}}) + "\n")
|
84 |
+
ans_file.flush()
|
85 |
+
ans_file.close()
|
86 |
+
|
87 |
+
if __name__ == "__main__":
|
88 |
+
parser = argparse.ArgumentParser()
|
89 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
90 |
+
parser.add_argument("--model-base", type=str, default=None)
|
91 |
+
parser.add_argument("--image-folder", type=str, default="")
|
92 |
+
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
93 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
94 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v1")
|
95 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
96 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
97 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
98 |
+
parser.add_argument("--top_p", type=float, default=None)
|
99 |
+
parser.add_argument("--num_beams", type=int, default=1)
|
100 |
+
args = parser.parse_args()
|
101 |
+
|
102 |
+
eval_model(args)
|
cumo/eval/model_vqa_loader.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Copyright 2023 Haotian Liu
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# ------------------------------------------------------------------------
|
16 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA) and S^2(https://github.com/bfshi/scaling_on_scales)
|
17 |
+
# Copyright 2024 Jiachen Li
|
18 |
+
# ------------------------------------------------------------------------
|
19 |
+
|
20 |
+
import argparse
|
21 |
+
import torch
|
22 |
+
import os
|
23 |
+
import json
|
24 |
+
from tqdm import tqdm
|
25 |
+
import shortuuid
|
26 |
+
|
27 |
+
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
28 |
+
from cumo.conversation import conv_templates, SeparatorStyle
|
29 |
+
from cumo.model.builder import load_pretrained_model
|
30 |
+
from cumo.utils import disable_torch_init
|
31 |
+
from cumo.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
|
32 |
+
from torch.utils.data import Dataset, DataLoader
|
33 |
+
|
34 |
+
from PIL import Image
|
35 |
+
import math
|
36 |
+
import pdb
|
37 |
+
|
38 |
+
def split_list(lst, n):
|
39 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
40 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
41 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
42 |
+
|
43 |
+
|
44 |
+
def get_chunk(lst, n, k):
|
45 |
+
chunks = split_list(lst, n)
|
46 |
+
return chunks[k]
|
47 |
+
|
48 |
+
|
49 |
+
# Custom dataset class
|
50 |
+
class CustomDataset(Dataset):
|
51 |
+
def __init__(self, questions, image_folder, tokenizer, image_processor, model_config):
|
52 |
+
self.questions = questions
|
53 |
+
self.image_folder = image_folder
|
54 |
+
self.tokenizer = tokenizer
|
55 |
+
self.image_processor = image_processor
|
56 |
+
self.model_config = model_config
|
57 |
+
|
58 |
+
def __getitem__(self, index):
|
59 |
+
line = self.questions[index]
|
60 |
+
image_file = line["image"]
|
61 |
+
qs = line["text"]
|
62 |
+
if self.model_config.mm_use_im_start_end:
|
63 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
64 |
+
else:
|
65 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
66 |
+
|
67 |
+
conv = conv_templates[args.conv_mode].copy()
|
68 |
+
conv.append_message(conv.roles[0], qs)
|
69 |
+
conv.append_message(conv.roles[1], None)
|
70 |
+
prompt = conv.get_prompt()
|
71 |
+
image = Image.open(os.path.join(self.image_folder, image_file)).convert('RGB')
|
72 |
+
image_tensor = process_images([image], self.image_processor, self.model_config)[0]
|
73 |
+
|
74 |
+
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
|
75 |
+
|
76 |
+
return input_ids, image_tensor, image.size
|
77 |
+
|
78 |
+
def __len__(self):
|
79 |
+
return len(self.questions)
|
80 |
+
|
81 |
+
|
82 |
+
def collate_fn(batch):
|
83 |
+
input_ids, image_tensors, image_sizes = zip(*batch)
|
84 |
+
input_ids = torch.stack(input_ids, dim=0)
|
85 |
+
image_tensors = torch.stack(image_tensors, dim=0)
|
86 |
+
return input_ids, image_tensors, image_sizes
|
87 |
+
|
88 |
+
|
89 |
+
# DataLoader
|
90 |
+
def create_data_loader(questions, image_folder, tokenizer, image_processor, model_config, batch_size=1, num_workers=4):
|
91 |
+
assert batch_size == 1, "batch_size must be 1"
|
92 |
+
dataset = CustomDataset(questions, image_folder, tokenizer, image_processor, model_config)
|
93 |
+
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, collate_fn=collate_fn)
|
94 |
+
return data_loader
|
95 |
+
|
96 |
+
|
97 |
+
def eval_model(args):
|
98 |
+
# Model
|
99 |
+
disable_torch_init()
|
100 |
+
model_path = os.path.expanduser(args.model_path)
|
101 |
+
model_name = get_model_name_from_path(model_path)
|
102 |
+
#tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
103 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, use_flash_attn=args.use_flash_attn)
|
104 |
+
model.config.training = False
|
105 |
+
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
|
106 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
107 |
+
answers_file = os.path.expanduser(args.answers_file)
|
108 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
109 |
+
ans_file = open(answers_file, "w")
|
110 |
+
|
111 |
+
if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
|
112 |
+
args.conv_mode = args.conv_mode + '_mmtag'
|
113 |
+
print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')
|
114 |
+
|
115 |
+
data_loader = create_data_loader(questions, args.image_folder, tokenizer, image_processor, model.config)
|
116 |
+
|
117 |
+
for (input_ids, image_tensor, image_sizes), line in tqdm(zip(data_loader, questions), total=len(questions)):
|
118 |
+
idx = line["question_id"]
|
119 |
+
cur_prompt = line["text"]
|
120 |
+
|
121 |
+
input_ids = input_ids.to(device='cuda', non_blocking=True)
|
122 |
+
|
123 |
+
with torch.inference_mode():
|
124 |
+
output_ids = model.generate(
|
125 |
+
input_ids,
|
126 |
+
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
|
127 |
+
image_sizes=image_sizes,
|
128 |
+
do_sample=True if args.temperature > 0 else False,
|
129 |
+
#temperature=args.temperature,
|
130 |
+
#top_p=args.top_p,
|
131 |
+
num_beams=args.num_beams,
|
132 |
+
max_new_tokens=args.max_new_tokens,
|
133 |
+
pad_token_id=tokenizer.eos_token_id,
|
134 |
+
use_cache=True)
|
135 |
+
|
136 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
137 |
+
ans_id = shortuuid.uuid()
|
138 |
+
ans_file.write(json.dumps({"question_id": idx,
|
139 |
+
"prompt": cur_prompt,
|
140 |
+
"text": outputs,
|
141 |
+
"answer_id": ans_id,
|
142 |
+
"model_id": model_name,
|
143 |
+
"metadata": {}}) + "\n")
|
144 |
+
# ans_file.flush()
|
145 |
+
ans_file.close()
|
146 |
+
|
147 |
+
if __name__ == "__main__":
|
148 |
+
parser = argparse.ArgumentParser()
|
149 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
150 |
+
parser.add_argument("--model-base", type=str, default=None)
|
151 |
+
parser.add_argument("--image-folder", type=str, default="")
|
152 |
+
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
153 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
154 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v1")
|
155 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
156 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
157 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
158 |
+
parser.add_argument("--top_p", type=float, default=None)
|
159 |
+
parser.add_argument("--num_beams", type=int, default=1)
|
160 |
+
parser.add_argument("--load-8bit", action="store_true")
|
161 |
+
parser.add_argument("--load-4bit", action="store_true")
|
162 |
+
parser.add_argument("--use-flash-attn", action="store_true")
|
163 |
+
parser.add_argument("--max_new_tokens", type=int, default=128)
|
164 |
+
args = parser.parse_args()
|
165 |
+
|
166 |
+
eval_model(args)
|
cumo/eval/model_vqa_mathvista.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
from tqdm import tqdm
|
6 |
+
import shortuuid
|
7 |
+
|
8 |
+
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
9 |
+
from cumo.conversation import conv_templates, SeparatorStyle
|
10 |
+
from cumo.model.builder import load_pretrained_model
|
11 |
+
from cumo.utils import disable_torch_init
|
12 |
+
from cumo.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
|
13 |
+
|
14 |
+
from datasets import load_dataset, concatenate_datasets
|
15 |
+
|
16 |
+
from cumo.eval.mmmu_utils.data_utils import load_yaml, save_json, CAT_SHORT2LONG
|
17 |
+
|
18 |
+
from PIL import Image
|
19 |
+
import math
|
20 |
+
import re
|
21 |
+
|
22 |
+
def process_single_sample(data):
|
23 |
+
return {'id': data['id'], 'question': data['question'], 'options': data['options'], 'answer': data['answer'], 'image': data['decoded_image'], 'question_type': data['question_type']}
|
24 |
+
|
25 |
+
def construct_prompt(sample):
|
26 |
+
question = sample['question']
|
27 |
+
example = ""
|
28 |
+
if sample['question_type'] == 'multiple-choice':
|
29 |
+
start_chr = 'A'
|
30 |
+
prediction_range = []
|
31 |
+
index2ans = {}
|
32 |
+
for option in options:
|
33 |
+
prediction_range.append(start_chr)
|
34 |
+
example += f"({start_chr}) {option}\n"
|
35 |
+
index2ans[start_chr] = option
|
36 |
+
start_chr = chr(ord(start_chr) + 1)
|
37 |
+
#empty_prompt_sample_structure = config['multi_choice_example_format']
|
38 |
+
#empty_prompt = empty_prompt_sample_structure.format(question, example)
|
39 |
+
empty_prompt = question + '\n' + example + '\n' + "Answer with the option's letter from the given choices directly"
|
40 |
+
res_dict = {}
|
41 |
+
res_dict['index2ans'] = index2ans
|
42 |
+
res_dict['correct_choice'] = sample['answer']
|
43 |
+
res_dict['empty_prompt'] = empty_prompt
|
44 |
+
res_dict['final_input_prompt'] = empty_prompt
|
45 |
+
elif sample['question_type'] == 'free_form':
|
46 |
+
empty_prompt = question + '\n' + "Answer the question using a single word or phrase."
|
47 |
+
res_dict = {}
|
48 |
+
res_dict['empty_prompt'] = empty_prompt
|
49 |
+
res_dict['final_input_prompt'] = empty_prompt
|
50 |
+
|
51 |
+
res_dict.update(sample)
|
52 |
+
return res_dict
|
53 |
+
|
54 |
+
def split_list(lst, n):
|
55 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
56 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
57 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
58 |
+
|
59 |
+
|
60 |
+
def get_chunk(lst, n, k):
|
61 |
+
chunks = split_list(lst, n)
|
62 |
+
return chunks[k]
|
63 |
+
|
64 |
+
|
65 |
+
def eval_model(args):
|
66 |
+
# Model
|
67 |
+
disable_torch_init()
|
68 |
+
model_path = os.path.expanduser(args.model_path)
|
69 |
+
model_name = get_model_name_from_path(model_path)
|
70 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
71 |
+
model.config.training = False
|
72 |
+
|
73 |
+
# run for each subject
|
74 |
+
dataset = load_dataset(args.data_path, split=args.split)
|
75 |
+
|
76 |
+
answers_file = os.path.expanduser(args.answers_file)
|
77 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
78 |
+
out_samples = dict()
|
79 |
+
for ind, sample in enumerate(tqdm(dataset, total=len(dataset))):
|
80 |
+
pid = sample['pid']
|
81 |
+
|
82 |
+
qs = sample['question']
|
83 |
+
|
84 |
+
if sample['decoded_image'] is not None:
|
85 |
+
#image_file = line["image"]
|
86 |
+
#image = Image.open(os.path.join(args.image_folder, image_file))
|
87 |
+
image_tensor = process_images([sample['decoded_image'].convert('RGB')], image_processor, model.config)[0]
|
88 |
+
images = image_tensor.unsqueeze(0).half().cuda()
|
89 |
+
image_sizes = [sample['decoded_image'].size]
|
90 |
+
if getattr(model.config, 'mm_use_im_start_end', False):
|
91 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
92 |
+
else:
|
93 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
94 |
+
else:
|
95 |
+
images = None
|
96 |
+
image_sizes = None
|
97 |
+
|
98 |
+
conv = conv_templates[args.conv_mode].copy()
|
99 |
+
conv.append_message(conv.roles[0], qs)
|
100 |
+
conv.append_message(conv.roles[1], None)
|
101 |
+
prompt = conv.get_prompt()
|
102 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
103 |
+
|
104 |
+
with torch.inference_mode():
|
105 |
+
output_ids = model.generate(
|
106 |
+
input_ids,
|
107 |
+
images=images,
|
108 |
+
image_sizes=image_sizes,
|
109 |
+
do_sample=True if args.temperature > 0 else False,
|
110 |
+
#temperature=args.temperature,
|
111 |
+
max_new_tokens=1024,
|
112 |
+
pad_token_id=tokenizer.eos_token_id,
|
113 |
+
use_cache=True,
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
response = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
118 |
+
sample['response'] = response
|
119 |
+
del sample['decoded_image']
|
120 |
+
out_samples[pid] = sample
|
121 |
+
|
122 |
+
save_json(answers_file, out_samples)
|
123 |
+
|
124 |
+
if __name__ == "__main__":
|
125 |
+
parser = argparse.ArgumentParser()
|
126 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
127 |
+
parser.add_argument("--model-base", type=str, default=None)
|
128 |
+
parser.add_argument("--image-folder", type=str, default="")
|
129 |
+
parser.add_argument("--question-file", type=str, default="tables/question.json")
|
130 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
131 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v0")
|
132 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
133 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
134 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
135 |
+
parser.add_argument('--data_path', type=str, default="AI4Math/MathVista") # hf dataset path.
|
136 |
+
parser.add_argument('--split', type=str, default='testmini')
|
137 |
+
parser.add_argument("--answer-prompter", action="store_true")
|
138 |
+
parser.add_argument("--single-pred-prompt", action="store_true")
|
139 |
+
args = parser.parse_args()
|
140 |
+
|
141 |
+
eval_model(args)
|
cumo/eval/model_vqa_mmbench.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import pandas as pd
|
6 |
+
from tqdm import tqdm
|
7 |
+
import shortuuid
|
8 |
+
|
9 |
+
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
10 |
+
from cumo.conversation import conv_templates, SeparatorStyle
|
11 |
+
from cumo.model.builder import load_pretrained_model
|
12 |
+
from cumo.utils import disable_torch_init
|
13 |
+
from cumo.mm_utils import tokenizer_image_token, process_images, load_image_from_base64, get_model_name_from_path
|
14 |
+
|
15 |
+
from PIL import Image
|
16 |
+
import math
|
17 |
+
|
18 |
+
|
19 |
+
all_options = ['A', 'B', 'C', 'D']
|
20 |
+
|
21 |
+
|
22 |
+
def split_list(lst, n):
|
23 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
24 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
25 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
26 |
+
|
27 |
+
|
28 |
+
def get_chunk(lst, n, k):
|
29 |
+
chunks = split_list(lst, n)
|
30 |
+
return chunks[k]
|
31 |
+
|
32 |
+
|
33 |
+
def is_none(value):
|
34 |
+
if value is None:
|
35 |
+
return True
|
36 |
+
if type(value) is float and math.isnan(value):
|
37 |
+
return True
|
38 |
+
if type(value) is str and value.lower() == 'nan':
|
39 |
+
return True
|
40 |
+
if type(value) is str and value.lower() == 'none':
|
41 |
+
return True
|
42 |
+
return False
|
43 |
+
|
44 |
+
def get_options(row, options):
|
45 |
+
parsed_options = []
|
46 |
+
for option in options:
|
47 |
+
option_value = row[option]
|
48 |
+
if is_none(option_value):
|
49 |
+
break
|
50 |
+
parsed_options.append(option_value)
|
51 |
+
return parsed_options
|
52 |
+
|
53 |
+
|
54 |
+
def eval_model(args):
|
55 |
+
# Model
|
56 |
+
disable_torch_init()
|
57 |
+
model_path = os.path.expanduser(args.model_path)
|
58 |
+
model_name = get_model_name_from_path(model_path)
|
59 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
60 |
+
model.config.training = False
|
61 |
+
questions = pd.read_table(os.path.expanduser(args.question_file))
|
62 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
63 |
+
answers_file = os.path.expanduser(args.answers_file)
|
64 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
65 |
+
ans_file = open(answers_file, "w")
|
66 |
+
|
67 |
+
if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
|
68 |
+
args.conv_mode = args.conv_mode + '_mmtag'
|
69 |
+
print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')
|
70 |
+
|
71 |
+
for index, row in tqdm(questions.iterrows(), total=len(questions)):
|
72 |
+
options = get_options(row, all_options)
|
73 |
+
cur_option_char = all_options[:len(options)]
|
74 |
+
|
75 |
+
if args.all_rounds:
|
76 |
+
num_rounds = len(options)
|
77 |
+
else:
|
78 |
+
num_rounds = 1
|
79 |
+
|
80 |
+
for round_idx in range(num_rounds):
|
81 |
+
idx = row['index']
|
82 |
+
question = row['question']
|
83 |
+
hint = row['hint']
|
84 |
+
image = load_image_from_base64(row['image'])
|
85 |
+
if not is_none(hint):
|
86 |
+
question = hint + '\n' + question
|
87 |
+
for option_char, option in zip(all_options[:len(options)], options):
|
88 |
+
question = question + '\n' + option_char + '. ' + option
|
89 |
+
qs = cur_prompt = question
|
90 |
+
if model.config.mm_use_im_start_end:
|
91 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
92 |
+
else:
|
93 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
94 |
+
|
95 |
+
if args.single_pred_prompt:
|
96 |
+
if args.lang == 'cn':
|
97 |
+
qs = qs + '\n' + "请直接回答选项字母。"
|
98 |
+
else:
|
99 |
+
qs = qs + '\n' + "Answer with the option's letter from the given choices directly."
|
100 |
+
|
101 |
+
conv = conv_templates[args.conv_mode].copy()
|
102 |
+
conv.append_message(conv.roles[0], qs)
|
103 |
+
conv.append_message(conv.roles[1], None)
|
104 |
+
prompt = conv.get_prompt()
|
105 |
+
|
106 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
107 |
+
|
108 |
+
image_tensor = process_images([image], image_processor, model.config)[0]
|
109 |
+
|
110 |
+
with torch.inference_mode():
|
111 |
+
output_ids = model.generate(
|
112 |
+
input_ids,
|
113 |
+
images=image_tensor.unsqueeze(0).half().cuda(),
|
114 |
+
image_sizes=[image.size],
|
115 |
+
do_sample=True if args.temperature > 0 else False,
|
116 |
+
#temperature=args.temperature,
|
117 |
+
#top_p=args.top_p,
|
118 |
+
num_beams=args.num_beams,
|
119 |
+
# no_repeat_ngram_size=3,
|
120 |
+
max_new_tokens=1024,
|
121 |
+
pad_token_id=tokenizer.eos_token_id,
|
122 |
+
use_cache=True)
|
123 |
+
|
124 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
125 |
+
|
126 |
+
ans_id = shortuuid.uuid()
|
127 |
+
ans_file.write(json.dumps({"question_id": idx,
|
128 |
+
"round_id": round_idx,
|
129 |
+
"prompt": cur_prompt,
|
130 |
+
"text": outputs,
|
131 |
+
"options": options,
|
132 |
+
"option_char": cur_option_char,
|
133 |
+
"answer_id": ans_id,
|
134 |
+
"model_id": model_name,
|
135 |
+
"metadata": {}}) + "\n")
|
136 |
+
ans_file.flush()
|
137 |
+
|
138 |
+
# rotate options
|
139 |
+
options = options[1:] + options[:1]
|
140 |
+
cur_option_char = cur_option_char[1:] + cur_option_char[:1]
|
141 |
+
ans_file.close()
|
142 |
+
|
143 |
+
if __name__ == "__main__":
|
144 |
+
parser = argparse.ArgumentParser()
|
145 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
146 |
+
parser.add_argument("--model-base", type=str, default=None)
|
147 |
+
parser.add_argument("--image-folder", type=str, default="")
|
148 |
+
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
149 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
150 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v1")
|
151 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
152 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
153 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
154 |
+
parser.add_argument("--top_p", type=float, default=None)
|
155 |
+
parser.add_argument("--num_beams", type=int, default=1)
|
156 |
+
parser.add_argument("--all-rounds", action="store_true")
|
157 |
+
parser.add_argument("--single-pred-prompt", action="store_true")
|
158 |
+
parser.add_argument("--lang", type=str, default="en")
|
159 |
+
args = parser.parse_args()
|
160 |
+
|
161 |
+
eval_model(args)
|
cumo/eval/model_vqa_mmmu.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
from tqdm import tqdm
|
6 |
+
import shortuuid
|
7 |
+
|
8 |
+
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
9 |
+
from cumo.conversation import conv_templates, SeparatorStyle
|
10 |
+
from cumo.model.builder import load_pretrained_model
|
11 |
+
from cumo.utils import disable_torch_init
|
12 |
+
from cumo.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
|
13 |
+
|
14 |
+
from datasets import load_dataset, concatenate_datasets
|
15 |
+
|
16 |
+
from cumo.eval.mmmu_utils.data_utils import load_yaml, save_json, CAT_SHORT2LONG
|
17 |
+
from cumo.eval.mmmu_utils.eval_utils import parse_multi_choice_response, parse_open_response
|
18 |
+
|
19 |
+
from PIL import Image
|
20 |
+
import math
|
21 |
+
import re
|
22 |
+
|
23 |
+
def process_single_sample(data):
|
24 |
+
question = data['question']
|
25 |
+
o_imgs_paths = []
|
26 |
+
for option in data['options']:
|
27 |
+
current_o_imgs_paths = re.findall("<img='(.*?)'>", option)
|
28 |
+
for img_path in current_o_imgs_paths:
|
29 |
+
o_imgs_paths.append(img_path)
|
30 |
+
|
31 |
+
if len(o_imgs_paths) > 1: # multiple images in options, used for random selection
|
32 |
+
return {'id': data['id'], 'question': question, 'options': data['options'], 'answer': data['answer'],
|
33 |
+
'image': None, 'question_type': data['question_type']}
|
34 |
+
else:
|
35 |
+
return {'id': data['id'], 'question': question, 'options': data['options'], 'answer': data['answer'],
|
36 |
+
'image': data['image_1'], 'question_type': data['question_type']}
|
37 |
+
|
38 |
+
def construct_prompt(sample):
|
39 |
+
question = sample['question']
|
40 |
+
options = eval(sample['options'])
|
41 |
+
example = ""
|
42 |
+
if sample['question_type'] == 'multiple-choice':
|
43 |
+
start_chr = 'A'
|
44 |
+
prediction_range = []
|
45 |
+
index2ans = {}
|
46 |
+
for option in options:
|
47 |
+
prediction_range.append(start_chr)
|
48 |
+
example += f"({start_chr}) {option}\n"
|
49 |
+
index2ans[start_chr] = option
|
50 |
+
start_chr = chr(ord(start_chr) + 1)
|
51 |
+
empty_prompt = question + '\n' + example + '\n' + "Answer with the option's letter from the given choices directly"
|
52 |
+
res_dict = {}
|
53 |
+
res_dict['index2ans'] = index2ans
|
54 |
+
res_dict['correct_choice'] = sample['answer']
|
55 |
+
res_dict['all_choices'] = prediction_range
|
56 |
+
res_dict['empty_prompt'] = empty_prompt
|
57 |
+
res_dict['final_input_prompt'] = empty_prompt
|
58 |
+
res_dict['gt_content'] = options[ord(sample['answer'].upper()) - ord('A')]
|
59 |
+
else:
|
60 |
+
empty_prompt = question + '\n' + "Answer the question using a single word or phrase."
|
61 |
+
res_dict = {}
|
62 |
+
res_dict['empty_prompt'] = empty_prompt
|
63 |
+
res_dict['final_input_prompt'] = empty_prompt
|
64 |
+
res_dict['gt_content'] = sample['answer']
|
65 |
+
|
66 |
+
res_dict.update(sample)
|
67 |
+
return res_dict
|
68 |
+
|
69 |
+
def split_list(lst, n):
|
70 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
71 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
72 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
73 |
+
|
74 |
+
|
75 |
+
def get_chunk(lst, n, k):
|
76 |
+
chunks = split_list(lst, n)
|
77 |
+
return chunks[k]
|
78 |
+
|
79 |
+
|
80 |
+
def eval_model(args):
|
81 |
+
# Model
|
82 |
+
disable_torch_init()
|
83 |
+
model_path = os.path.expanduser(args.model_path)
|
84 |
+
model_name = get_model_name_from_path(model_path)
|
85 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
86 |
+
model.config.training = False
|
87 |
+
|
88 |
+
# run for each subject
|
89 |
+
sub_dataset_list = []
|
90 |
+
for subject in CAT_SHORT2LONG.values():
|
91 |
+
print("loading ", subject)
|
92 |
+
sub_dataset = load_dataset(args.data_path, subject, split=args.split)
|
93 |
+
sub_dataset_list.append(sub_dataset)
|
94 |
+
|
95 |
+
# merge all dataset
|
96 |
+
dataset = concatenate_datasets(sub_dataset_list)
|
97 |
+
|
98 |
+
answers_file = os.path.expanduser(args.answers_file)
|
99 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
100 |
+
out_samples = dict()
|
101 |
+
|
102 |
+
for sample in tqdm(dataset, total=len(dataset)):
|
103 |
+
sample = process_single_sample(sample)
|
104 |
+
|
105 |
+
sample = construct_prompt(sample)
|
106 |
+
|
107 |
+
qs = sample['final_input_prompt'].replace('<image 1>', '').strip()
|
108 |
+
|
109 |
+
if sample['image'] is not None:
|
110 |
+
image_tensor = process_images([sample['image'].convert('RGB')], image_processor, model.config)[0]
|
111 |
+
images = image_tensor.unsqueeze(0).half().cuda()
|
112 |
+
image_sizes = [sample['image'].size]
|
113 |
+
if getattr(model.config, 'mm_use_im_start_end', False):
|
114 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
115 |
+
else:
|
116 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
117 |
+
else:
|
118 |
+
images = None
|
119 |
+
image_sizes = None
|
120 |
+
|
121 |
+
conv = conv_templates[args.conv_mode].copy()
|
122 |
+
conv.append_message(conv.roles[0], qs)
|
123 |
+
conv.append_message(conv.roles[1], None)
|
124 |
+
prompt = conv.get_prompt()
|
125 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
126 |
+
|
127 |
+
with torch.inference_mode():
|
128 |
+
output_ids = model.generate(
|
129 |
+
input_ids,
|
130 |
+
images=images,
|
131 |
+
image_sizes=image_sizes,
|
132 |
+
do_sample=True if args.temperature > 0 else False,
|
133 |
+
#temperature=args.temperature,
|
134 |
+
max_new_tokens=1024,
|
135 |
+
pad_token_id=tokenizer.eos_token_id,
|
136 |
+
use_cache=True,
|
137 |
+
)
|
138 |
+
|
139 |
+
response = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
140 |
+
if sample['question_type'] == 'multiple-choice':
|
141 |
+
pred_ans = parse_multi_choice_response(response, sample['all_choices'], sample['index2ans'])
|
142 |
+
else: # open question
|
143 |
+
pred_ans = response
|
144 |
+
out_samples[sample['id']] = pred_ans
|
145 |
+
|
146 |
+
save_json(answers_file, out_samples)
|
147 |
+
|
148 |
+
if __name__ == "__main__":
|
149 |
+
parser = argparse.ArgumentParser()
|
150 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
151 |
+
parser.add_argument("--model-base", type=str, default=None)
|
152 |
+
parser.add_argument("--image-folder", type=str, default="")
|
153 |
+
parser.add_argument("--question-file", type=str, default="tables/question.json")
|
154 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
155 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v0")
|
156 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
157 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
158 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
159 |
+
parser.add_argument('--data_path', type=str, default="MMMU/MMMU") # hf dataset path.
|
160 |
+
parser.add_argument('--split', type=str, default='validation')
|
161 |
+
parser.add_argument("--answer-prompter", action="store_true")
|
162 |
+
parser.add_argument("--single-pred-prompt", action="store_true")
|
163 |
+
args = parser.parse_args()
|
164 |
+
|
165 |
+
eval_model(args)
|
cumo/eval/model_vqa_science.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Copyright 2023 Haotian Liu
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# ------------------------------------------------------------------------
|
16 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA) and S^2(https://github.com/bfshi/scaling_on_scales)
|
17 |
+
# Copyright 2024 Jiachen Li
|
18 |
+
# ------------------------------------------------------------------------
|
19 |
+
|
20 |
+
import argparse
|
21 |
+
import torch
|
22 |
+
import os
|
23 |
+
import json
|
24 |
+
from tqdm import tqdm
|
25 |
+
import shortuuid
|
26 |
+
|
27 |
+
from cumo.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
28 |
+
from cumo.conversation import conv_templates, SeparatorStyle
|
29 |
+
from cumo.model.builder import load_pretrained_model
|
30 |
+
from cumo.utils import disable_torch_init
|
31 |
+
from cumo.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
|
32 |
+
|
33 |
+
from PIL import Image
|
34 |
+
import math
|
35 |
+
|
36 |
+
|
37 |
+
def split_list(lst, n):
|
38 |
+
"""Split a list into n (roughly) equal-sized chunks"""
|
39 |
+
chunk_size = math.ceil(len(lst) / n) # integer division
|
40 |
+
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
41 |
+
|
42 |
+
|
43 |
+
def get_chunk(lst, n, k):
|
44 |
+
chunks = split_list(lst, n)
|
45 |
+
return chunks[k]
|
46 |
+
|
47 |
+
|
48 |
+
def eval_model(args):
|
49 |
+
# Model
|
50 |
+
disable_torch_init()
|
51 |
+
model_path = os.path.expanduser(args.model_path)
|
52 |
+
model_name = get_model_name_from_path(model_path)
|
53 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
54 |
+
model.config.training = False
|
55 |
+
questions = json.load(open(os.path.expanduser(args.question_file), "r"))
|
56 |
+
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
57 |
+
answers_file = os.path.expanduser(args.answers_file)
|
58 |
+
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
59 |
+
ans_file = open(answers_file, "w")
|
60 |
+
for i, line in enumerate(tqdm(questions)):
|
61 |
+
idx = line["id"]
|
62 |
+
question = line['conversations'][0]
|
63 |
+
qs = question['value'].replace('<image>', '').strip()
|
64 |
+
cur_prompt = qs
|
65 |
+
|
66 |
+
if 'image' in line:
|
67 |
+
image_file = line["image"]
|
68 |
+
image = Image.open(os.path.join(args.image_folder, image_file))
|
69 |
+
image_tensor = process_images([image], image_processor, model.config)[0]
|
70 |
+
images = image_tensor.unsqueeze(0).half().cuda()
|
71 |
+
image_sizes = [image.size]
|
72 |
+
if getattr(model.config, 'mm_use_im_start_end', False):
|
73 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
74 |
+
else:
|
75 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
76 |
+
cur_prompt = '<image>' + '\n' + cur_prompt
|
77 |
+
else:
|
78 |
+
images = None
|
79 |
+
image_sizes = None
|
80 |
+
|
81 |
+
if args.single_pred_prompt:
|
82 |
+
qs = qs + '\n' + "Answer with the option's letter from the given choices directly."
|
83 |
+
cur_prompt = cur_prompt + '\n' + "Answer with the option's letter from the given choices directly."
|
84 |
+
|
85 |
+
conv = conv_templates[args.conv_mode].copy()
|
86 |
+
conv.append_message(conv.roles[0], qs)
|
87 |
+
conv.append_message(conv.roles[1], None)
|
88 |
+
prompt = conv.get_prompt()
|
89 |
+
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
|
90 |
+
|
91 |
+
with torch.inference_mode():
|
92 |
+
output_ids = model.generate(
|
93 |
+
input_ids,
|
94 |
+
images=images,
|
95 |
+
image_sizes=image_sizes,
|
96 |
+
do_sample=True if args.temperature > 0 else False,
|
97 |
+
#temperature=args.temperature,
|
98 |
+
max_new_tokens=1024,
|
99 |
+
pad_token_id=tokenizer.eos_token_id,
|
100 |
+
use_cache=True,
|
101 |
+
)
|
102 |
+
|
103 |
+
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
|
104 |
+
|
105 |
+
ans_id = shortuuid.uuid()
|
106 |
+
ans_file.write(json.dumps({"question_id": idx,
|
107 |
+
"prompt": cur_prompt,
|
108 |
+
"text": outputs,
|
109 |
+
"answer_id": ans_id,
|
110 |
+
"model_id": model_name,
|
111 |
+
"metadata": {}}) + "\n")
|
112 |
+
ans_file.flush()
|
113 |
+
ans_file.close()
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
parser = argparse.ArgumentParser()
|
117 |
+
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
118 |
+
parser.add_argument("--model-base", type=str, default=None)
|
119 |
+
parser.add_argument("--image-folder", type=str, default="")
|
120 |
+
parser.add_argument("--question-file", type=str, default="tables/question.json")
|
121 |
+
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
122 |
+
parser.add_argument("--conv-mode", type=str, default="llava_v0")
|
123 |
+
parser.add_argument("--num-chunks", type=int, default=1)
|
124 |
+
parser.add_argument("--chunk-idx", type=int, default=0)
|
125 |
+
parser.add_argument("--temperature", type=float, default=0.2)
|
126 |
+
parser.add_argument("--answer-prompter", action="store_true")
|
127 |
+
parser.add_argument("--single-pred-prompt", action="store_true")
|
128 |
+
args = parser.parse_args()
|
129 |
+
|
130 |
+
eval_model(args)
|
cumo/eval/summarize_gpt_review.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from collections import defaultdict
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
import argparse
|
8 |
+
def parse_args():
|
9 |
+
parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
|
10 |
+
parser.add_argument('-d', '--dir', default=None)
|
11 |
+
parser.add_argument('-v', '--version', default=None)
|
12 |
+
parser.add_argument('-s', '--select', nargs='*', default=None)
|
13 |
+
parser.add_argument('-f', '--files', nargs='*', default=[])
|
14 |
+
parser.add_argument('-i', '--ignore', nargs='*', default=[])
|
15 |
+
return parser.parse_args()
|
16 |
+
|
17 |
+
|
18 |
+
if __name__ == '__main__':
|
19 |
+
args = parse_args()
|
20 |
+
if args.ignore is not None:
|
21 |
+
args.ignore = [int(x) for x in args.ignore]
|
22 |
+
|
23 |
+
if len(args.files) > 0:
|
24 |
+
review_files = args.files
|
25 |
+
else:
|
26 |
+
review_files = [x for x in os.listdir(args.dir) if x.endswith('.jsonl') and (x.startswith('gpt4_text') or x.startswith('reviews_') or x.startswith('review_') or 'review' in args.dir)]
|
27 |
+
|
28 |
+
for review_file in sorted(review_files):
|
29 |
+
config = os.path.basename(review_file).replace('gpt4_text_', '').replace('.jsonl', '')
|
30 |
+
if args.select is not None and any(x not in config for x in args.select):
|
31 |
+
continue
|
32 |
+
if '0613' in config:
|
33 |
+
version = '0613'
|
34 |
+
else:
|
35 |
+
version = '0314'
|
36 |
+
if args.version is not None and args.version != version:
|
37 |
+
continue
|
38 |
+
scores = defaultdict(list)
|
39 |
+
print(config)
|
40 |
+
with open(os.path.join(args.dir, review_file) if args.dir is not None else review_file) as f:
|
41 |
+
for review_str in f:
|
42 |
+
review = json.loads(review_str)
|
43 |
+
if review['question_id'] in args.ignore:
|
44 |
+
continue
|
45 |
+
if 'category' in review:
|
46 |
+
scores[review['category']].append(review['tuple'])
|
47 |
+
scores['all'].append(review['tuple'])
|
48 |
+
else:
|
49 |
+
if 'tuple' in review:
|
50 |
+
scores['all'].append(review['tuple'])
|
51 |
+
else:
|
52 |
+
scores['all'].append(review['score'])
|
53 |
+
for k, v in sorted(scores.items()):
|
54 |
+
stats = np.asarray(v).mean(0).tolist()
|
55 |
+
stats = [round(x, 3) for x in stats]
|
56 |
+
# print(k, stats, round(stats[1]/stats[0]*100, 1))
|
57 |
+
print(k, round(stats[1]/stats[0]*100, 1), round(stats[0] * 10, 1), round(stats[1] * 10, 1))
|
58 |
+
print('=================================')
|
cumo/mm_utils.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
|
16 |
+
# Copyright 2024 Jiachen Li
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
from PIL import Image
|
20 |
+
from io import BytesIO
|
21 |
+
import base64
|
22 |
+
import torch
|
23 |
+
import math
|
24 |
+
import ast
|
25 |
+
|
26 |
+
from transformers import StoppingCriteria
|
27 |
+
from cumo.constants import IMAGE_TOKEN_INDEX
|
28 |
+
|
29 |
+
|
30 |
+
def select_best_resolution(original_size, possible_resolutions):
|
31 |
+
"""
|
32 |
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
original_size (tuple): The original size of the image in the format (width, height).
|
36 |
+
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
|
37 |
+
|
38 |
+
Returns:
|
39 |
+
tuple: The best fit resolution in the format (width, height).
|
40 |
+
"""
|
41 |
+
original_width, original_height = original_size
|
42 |
+
best_fit = None
|
43 |
+
max_effective_resolution = 0
|
44 |
+
min_wasted_resolution = float('inf')
|
45 |
+
|
46 |
+
for width, height in possible_resolutions:
|
47 |
+
scale = min(width / original_width, height / original_height)
|
48 |
+
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
49 |
+
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
50 |
+
wasted_resolution = (width * height) - effective_resolution
|
51 |
+
|
52 |
+
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
|
53 |
+
max_effective_resolution = effective_resolution
|
54 |
+
min_wasted_resolution = wasted_resolution
|
55 |
+
best_fit = (width, height)
|
56 |
+
|
57 |
+
return best_fit
|
58 |
+
|
59 |
+
|
60 |
+
def resize_and_pad_image(image, target_resolution):
|
61 |
+
"""
|
62 |
+
Resize and pad an image to a target resolution while maintaining aspect ratio.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
image (PIL.Image.Image): The input image.
|
66 |
+
target_resolution (tuple): The target resolution (width, height) of the image.
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
PIL.Image.Image: The resized and padded image.
|
70 |
+
"""
|
71 |
+
original_width, original_height = image.size
|
72 |
+
target_width, target_height = target_resolution
|
73 |
+
|
74 |
+
scale_w = target_width / original_width
|
75 |
+
scale_h = target_height / original_height
|
76 |
+
|
77 |
+
if scale_w < scale_h:
|
78 |
+
new_width = target_width
|
79 |
+
new_height = min(math.ceil(original_height * scale_w), target_height)
|
80 |
+
else:
|
81 |
+
new_height = target_height
|
82 |
+
new_width = min(math.ceil(original_width * scale_h), target_width)
|
83 |
+
|
84 |
+
# Resize the image
|
85 |
+
resized_image = image.resize((new_width, new_height))
|
86 |
+
|
87 |
+
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
|
88 |
+
paste_x = (target_width - new_width) // 2
|
89 |
+
paste_y = (target_height - new_height) // 2
|
90 |
+
new_image.paste(resized_image, (paste_x, paste_y))
|
91 |
+
|
92 |
+
return new_image
|
93 |
+
|
94 |
+
|
95 |
+
def divide_to_patches(image, patch_size):
|
96 |
+
"""
|
97 |
+
Divides an image into patches of a specified size.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
image (PIL.Image.Image): The input image.
|
101 |
+
patch_size (int): The size of each patch.
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
list: A list of PIL.Image.Image objects representing the patches.
|
105 |
+
"""
|
106 |
+
patches = []
|
107 |
+
width, height = image.size
|
108 |
+
for i in range(0, height, patch_size):
|
109 |
+
for j in range(0, width, patch_size):
|
110 |
+
box = (j, i, j + patch_size, i + patch_size)
|
111 |
+
patch = image.crop(box)
|
112 |
+
patches.append(patch)
|
113 |
+
|
114 |
+
return patches
|
115 |
+
|
116 |
+
|
117 |
+
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
118 |
+
"""
|
119 |
+
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
120 |
+
|
121 |
+
Args:
|
122 |
+
image_size (tuple): The size of the input image in the format (width, height).
|
123 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
124 |
+
patch_size (int): The size of each image patch.
|
125 |
+
|
126 |
+
Returns:
|
127 |
+
tuple: The shape of the image patch grid in the format (width, height).
|
128 |
+
"""
|
129 |
+
if type(grid_pinpoints) is list:
|
130 |
+
possible_resolutions = grid_pinpoints
|
131 |
+
else:
|
132 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
133 |
+
width, height = select_best_resolution(image_size, possible_resolutions)
|
134 |
+
return width // patch_size, height // patch_size
|
135 |
+
|
136 |
+
|
137 |
+
def process_anyres_image(image, processor, grid_pinpoints):
|
138 |
+
"""
|
139 |
+
Process an image with variable resolutions.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
image (PIL.Image.Image): The input image to be processed.
|
143 |
+
processor: The image processor object.
|
144 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
145 |
+
|
146 |
+
Returns:
|
147 |
+
torch.Tensor: A tensor containing the processed image patches.
|
148 |
+
"""
|
149 |
+
if type(grid_pinpoints) is list:
|
150 |
+
possible_resolutions = grid_pinpoints
|
151 |
+
else:
|
152 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
153 |
+
best_resolution = select_best_resolution(image.size, possible_resolutions)
|
154 |
+
image_padded = resize_and_pad_image(image, best_resolution)
|
155 |
+
|
156 |
+
patches = divide_to_patches(image_padded, processor.crop_size['height'])
|
157 |
+
|
158 |
+
image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
|
159 |
+
|
160 |
+
image_patches = [image_original_resize] + patches
|
161 |
+
image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
|
162 |
+
for image_patch in image_patches]
|
163 |
+
return torch.stack(image_patches, dim=0)
|
164 |
+
|
165 |
+
|
166 |
+
def load_image_from_base64(image):
|
167 |
+
return Image.open(BytesIO(base64.b64decode(image)))
|
168 |
+
|
169 |
+
|
170 |
+
def expand2square(pil_img, background_color):
|
171 |
+
width, height = pil_img.size
|
172 |
+
if width == height:
|
173 |
+
return pil_img
|
174 |
+
elif width > height:
|
175 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
176 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
177 |
+
return result
|
178 |
+
else:
|
179 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
180 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
181 |
+
return result
|
182 |
+
|
183 |
+
|
184 |
+
def process_images(images, image_processor, model_cfg):
|
185 |
+
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
|
186 |
+
new_images = []
|
187 |
+
if image_aspect_ratio == 'pad':
|
188 |
+
for image in images:
|
189 |
+
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
|
190 |
+
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
191 |
+
new_images.append(image)
|
192 |
+
elif image_aspect_ratio == "anyres":
|
193 |
+
for image in images:
|
194 |
+
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
|
195 |
+
new_images.append(image)
|
196 |
+
else:
|
197 |
+
return image_processor(images, return_tensors='pt')['pixel_values']
|
198 |
+
if all(x.shape == new_images[0].shape for x in new_images):
|
199 |
+
new_images = torch.stack(new_images, dim=0)
|
200 |
+
return new_images
|
201 |
+
|
202 |
+
|
203 |
+
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
204 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
205 |
+
|
206 |
+
def insert_separator(X, sep):
|
207 |
+
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
208 |
+
|
209 |
+
input_ids = []
|
210 |
+
offset = 0
|
211 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
212 |
+
offset = 1
|
213 |
+
input_ids.append(prompt_chunks[0][0])
|
214 |
+
|
215 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
216 |
+
input_ids.extend(x[offset:])
|
217 |
+
|
218 |
+
if return_tensors is not None:
|
219 |
+
if return_tensors == 'pt':
|
220 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
221 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
222 |
+
return input_ids
|
223 |
+
|
224 |
+
|
225 |
+
def get_model_name_from_path(model_path):
|
226 |
+
model_path = model_path.strip("/")
|
227 |
+
model_paths = model_path.split("/")
|
228 |
+
if model_paths[-1].startswith('checkpoint-'):
|
229 |
+
return model_paths[-2] + "_" + model_paths[-1]
|
230 |
+
else:
|
231 |
+
return model_paths[-1]
|
232 |
+
|
233 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
234 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
235 |
+
self.keywords = keywords
|
236 |
+
self.keyword_ids = []
|
237 |
+
self.max_keyword_len = 0
|
238 |
+
for keyword in keywords:
|
239 |
+
cur_keyword_ids = tokenizer(keyword).input_ids
|
240 |
+
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
241 |
+
cur_keyword_ids = cur_keyword_ids[1:]
|
242 |
+
if len(cur_keyword_ids) > self.max_keyword_len:
|
243 |
+
self.max_keyword_len = len(cur_keyword_ids)
|
244 |
+
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
245 |
+
self.tokenizer = tokenizer
|
246 |
+
self.start_len = input_ids.shape[1]
|
247 |
+
|
248 |
+
def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
249 |
+
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
|
250 |
+
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
251 |
+
for keyword_id in self.keyword_ids:
|
252 |
+
truncated_output_ids = output_ids[0, -keyword_id.shape[0]:]
|
253 |
+
if torch.equal(truncated_output_ids, keyword_id):
|
254 |
+
return True
|
255 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
256 |
+
for keyword in self.keywords:
|
257 |
+
if keyword in outputs:
|
258 |
+
return True
|
259 |
+
return False
|
260 |
+
|
261 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
262 |
+
outputs = []
|
263 |
+
for i in range(output_ids.shape[0]):
|
264 |
+
outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores))
|
265 |
+
return all(outputs)
|
cumo/model/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
try:
|
2 |
+
from .language_model.llava_llama import LlavaLlamaForCausalLM, LlavaConfig
|
3 |
+
from .language_model.llava_mpt import LlavaMptForCausalLM, LlavaMptConfig
|
4 |
+
from .language_model.llava_mistral import LlavaMistralForCausalLM, LlavaMistralConfig
|
5 |
+
from .language_model.llava_mixtral import LlavaMixtralForCausalLM, LlavaMixtralConfig
|
6 |
+
except:
|
7 |
+
pass
|
cumo/model/builder.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
|
16 |
+
# Copyright 2024 Jiachen Li
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
|
20 |
+
import os
|
21 |
+
import warnings
|
22 |
+
import shutil
|
23 |
+
|
24 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
|
25 |
+
import torch
|
26 |
+
from cumo.model import *
|
27 |
+
from cumo.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
28 |
+
|
29 |
+
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", use_flash_attn=False, **kwargs):
|
30 |
+
kwargs = {"device_map": device_map, **kwargs}
|
31 |
+
if device != "cuda":
|
32 |
+
kwargs['device_map'] = {"": device}
|
33 |
+
|
34 |
+
if load_8bit:
|
35 |
+
kwargs['load_in_8bit'] = True
|
36 |
+
elif load_4bit:
|
37 |
+
kwargs['load_in_4bit'] = True
|
38 |
+
kwargs['quantization_config'] = BitsAndBytesConfig(
|
39 |
+
load_in_4bit=True,
|
40 |
+
bnb_4bit_compute_dtype=torch.float16,
|
41 |
+
bnb_4bit_use_double_quant=True,
|
42 |
+
bnb_4bit_quant_type='nf4'
|
43 |
+
)
|
44 |
+
else:
|
45 |
+
kwargs['torch_dtype'] = torch.float16
|
46 |
+
if use_flash_attn:
|
47 |
+
kwargs['attn_implementation'] = 'flash_attention_2'
|
48 |
+
|
49 |
+
if 'lora' in model_name.lower() and model_base is None:
|
50 |
+
warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
|
51 |
+
if 'lora' in model_name.lower() and model_base is not None:
|
52 |
+
if 'vicuna' in model_base:
|
53 |
+
from cumo.model.language_model.llava_llama import LlavaConfig
|
54 |
+
lora_cfg_pretrained = LlavaConfig.from_pretrained(model_path)
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
56 |
+
print('Loading from base model...')
|
57 |
+
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
|
58 |
+
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
59 |
+
if model.lm_head.weight.shape[0] != token_num:
|
60 |
+
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
61 |
+
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
62 |
+
elif 'mistral' in model_base:
|
63 |
+
if '8x' in model_base:
|
64 |
+
from cumo.model.language_model.llava_mixtral import LlavaMixtralConfig
|
65 |
+
lora_cfg_pretrained = LlavaMixtralConfig.from_pretrained(model_path)
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
67 |
+
print('Loading from base model...')
|
68 |
+
model = LlavaMixtralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
|
69 |
+
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
70 |
+
if model.lm_head.weight.shape[0] != token_num:
|
71 |
+
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
72 |
+
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
73 |
+
else:
|
74 |
+
from cumo.model.language_model.llava_mistral import LlavaMistralConfig
|
75 |
+
lora_cfg_pretrained = LlavaMistralConfig.from_pretrained(model_path)
|
76 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
77 |
+
print('Loading from base model...')
|
78 |
+
model = LlavaMistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
|
79 |
+
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
80 |
+
if model.lm_head.weight.shape[0] != token_num:
|
81 |
+
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
82 |
+
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
83 |
+
|
84 |
+
print('Loading additional weights...')
|
85 |
+
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
|
86 |
+
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
|
87 |
+
else:
|
88 |
+
# this is probably from HF Hub
|
89 |
+
from huggingface_hub import hf_hub_download
|
90 |
+
def load_from_hf(repo_id, filename, subfolder=None):
|
91 |
+
cache_file = hf_hub_download(
|
92 |
+
repo_id=repo_id,
|
93 |
+
filename=filename,
|
94 |
+
subfolder=subfolder)
|
95 |
+
return torch.load(cache_file, map_location='cpu')
|
96 |
+
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
|
97 |
+
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
|
98 |
+
if any(k.startswith('model.model.') for k in non_lora_trainables):
|
99 |
+
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
|
100 |
+
model.load_state_dict(non_lora_trainables, strict=False)
|
101 |
+
|
102 |
+
from peft import PeftModel
|
103 |
+
print('Loading LoRA weights...')
|
104 |
+
model = PeftModel.from_pretrained(model, model_path)
|
105 |
+
print('Merging LoRA weights...')
|
106 |
+
model = model.merge_and_unload()
|
107 |
+
print('Model is loaded...')
|
108 |
+
else:
|
109 |
+
print('Loading from full model...')
|
110 |
+
if 'mpt' in model_name.lower():
|
111 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
112 |
+
model = LlavaMptForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
113 |
+
elif 'mistral' in model_name.lower() or 'mixtral' in model_name.lower():
|
114 |
+
if '8x' in model_name:
|
115 |
+
print('Loading CuMo 8x7b model...')
|
116 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
117 |
+
tokenizer.pad_token = tokenizer.unk_token
|
118 |
+
model = LlavaMixtralForCausalLM.from_pretrained(
|
119 |
+
model_path,
|
120 |
+
low_cpu_mem_usage=True,
|
121 |
+
**kwargs
|
122 |
+
)
|
123 |
+
else:
|
124 |
+
print('Loading CuMo 7b model...')
|
125 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
126 |
+
tokenizer.pad_token = tokenizer.unk_token
|
127 |
+
model = LlavaMistralForCausalLM.from_pretrained(
|
128 |
+
model_path,
|
129 |
+
low_cpu_mem_usage=True,
|
130 |
+
**kwargs
|
131 |
+
)
|
132 |
+
else:
|
133 |
+
print('Loading LLaVA origin from full model...')
|
134 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
135 |
+
model = LlavaLlamaForCausalLM.from_pretrained(
|
136 |
+
model_path,
|
137 |
+
low_cpu_mem_usage=True,
|
138 |
+
**kwargs
|
139 |
+
)
|
140 |
+
|
141 |
+
image_processor = None
|
142 |
+
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
143 |
+
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
|
144 |
+
if mm_use_im_patch_token:
|
145 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
146 |
+
if mm_use_im_start_end:
|
147 |
+
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
148 |
+
model.resize_token_embeddings(len(tokenizer))
|
149 |
+
vision_tower = model.get_vision_tower()
|
150 |
+
if device_map != 'auto':
|
151 |
+
vision_tower.to(device=device_map, dtype=torch.float16)
|
152 |
+
image_processor = vision_tower.image_processor
|
153 |
+
|
154 |
+
if hasattr(model.config, "max_sequence_length"):
|
155 |
+
context_len = model.config.max_sequence_length
|
156 |
+
else:
|
157 |
+
context_len = 2048
|
158 |
+
|
159 |
+
return tokenizer, model, image_processor, context_len
|
cumo/model/language_model/llava_llama.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
from transformers import AutoConfig, AutoModelForCausalLM, \
|
22 |
+
LlamaConfig, LlamaModel, LlamaForCausalLM
|
23 |
+
|
24 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
25 |
+
from transformers.generation.utils import GenerateOutput
|
26 |
+
|
27 |
+
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
28 |
+
|
29 |
+
|
30 |
+
class LlavaConfig(LlamaConfig):
|
31 |
+
model_type = "llava_llama"
|
32 |
+
|
33 |
+
|
34 |
+
class LlavaLlamaModel(LlavaMetaModel, LlamaModel):
|
35 |
+
config_class = LlavaConfig
|
36 |
+
|
37 |
+
def __init__(self, config: LlamaConfig):
|
38 |
+
super(LlavaLlamaModel, self).__init__(config)
|
39 |
+
|
40 |
+
|
41 |
+
class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM):
|
42 |
+
config_class = LlavaConfig
|
43 |
+
|
44 |
+
def __init__(self, config):
|
45 |
+
super(LlamaForCausalLM, self).__init__(config)
|
46 |
+
self.model = LlavaLlamaModel(config)
|
47 |
+
self.pretraining_tp = config.pretraining_tp
|
48 |
+
self.vocab_size = config.vocab_size
|
49 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
50 |
+
|
51 |
+
# Initialize weights and apply final processing
|
52 |
+
self.post_init()
|
53 |
+
|
54 |
+
def get_model(self):
|
55 |
+
return self.model
|
56 |
+
|
57 |
+
def forward(
|
58 |
+
self,
|
59 |
+
input_ids: torch.LongTensor = None,
|
60 |
+
attention_mask: Optional[torch.Tensor] = None,
|
61 |
+
position_ids: Optional[torch.LongTensor] = None,
|
62 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
63 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
64 |
+
labels: Optional[torch.LongTensor] = None,
|
65 |
+
use_cache: Optional[bool] = None,
|
66 |
+
output_attentions: Optional[bool] = None,
|
67 |
+
output_hidden_states: Optional[bool] = None,
|
68 |
+
images: Optional[torch.FloatTensor] = None,
|
69 |
+
image_sizes: Optional[List[List[int]]] = None,
|
70 |
+
return_dict: Optional[bool] = None,
|
71 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
72 |
+
|
73 |
+
if inputs_embeds is None:
|
74 |
+
(
|
75 |
+
input_ids,
|
76 |
+
position_ids,
|
77 |
+
attention_mask,
|
78 |
+
past_key_values,
|
79 |
+
inputs_embeds,
|
80 |
+
labels
|
81 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
82 |
+
input_ids,
|
83 |
+
position_ids,
|
84 |
+
attention_mask,
|
85 |
+
past_key_values,
|
86 |
+
labels,
|
87 |
+
images,
|
88 |
+
image_sizes
|
89 |
+
)
|
90 |
+
|
91 |
+
return super().forward(
|
92 |
+
input_ids=input_ids,
|
93 |
+
attention_mask=attention_mask,
|
94 |
+
position_ids=position_ids,
|
95 |
+
past_key_values=past_key_values,
|
96 |
+
inputs_embeds=inputs_embeds,
|
97 |
+
labels=labels,
|
98 |
+
use_cache=use_cache,
|
99 |
+
output_attentions=output_attentions,
|
100 |
+
output_hidden_states=output_hidden_states,
|
101 |
+
return_dict=return_dict
|
102 |
+
)
|
103 |
+
|
104 |
+
@torch.no_grad()
|
105 |
+
def generate(
|
106 |
+
self,
|
107 |
+
inputs: Optional[torch.Tensor] = None,
|
108 |
+
images: Optional[torch.Tensor] = None,
|
109 |
+
image_sizes: Optional[torch.Tensor] = None,
|
110 |
+
**kwargs,
|
111 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
112 |
+
position_ids = kwargs.pop("position_ids", None)
|
113 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
114 |
+
if "inputs_embeds" in kwargs:
|
115 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
116 |
+
|
117 |
+
if images is not None:
|
118 |
+
(
|
119 |
+
inputs,
|
120 |
+
position_ids,
|
121 |
+
attention_mask,
|
122 |
+
_,
|
123 |
+
inputs_embeds,
|
124 |
+
_
|
125 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
126 |
+
inputs,
|
127 |
+
position_ids,
|
128 |
+
attention_mask,
|
129 |
+
None,
|
130 |
+
None,
|
131 |
+
images,
|
132 |
+
image_sizes=image_sizes
|
133 |
+
)
|
134 |
+
else:
|
135 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
136 |
+
|
137 |
+
return super().generate(
|
138 |
+
position_ids=position_ids,
|
139 |
+
attention_mask=attention_mask,
|
140 |
+
inputs_embeds=inputs_embeds,
|
141 |
+
**kwargs
|
142 |
+
)
|
143 |
+
|
144 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
|
145 |
+
inputs_embeds=None, **kwargs):
|
146 |
+
images = kwargs.pop("images", None)
|
147 |
+
image_sizes = kwargs.pop("image_sizes", None)
|
148 |
+
inputs = super().prepare_inputs_for_generation(
|
149 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
150 |
+
)
|
151 |
+
if images is not None:
|
152 |
+
inputs['images'] = images
|
153 |
+
if image_sizes is not None:
|
154 |
+
inputs['image_sizes'] = image_sizes
|
155 |
+
return inputs
|
156 |
+
|
157 |
+
AutoConfig.register("llava_llama", LlavaConfig)
|
158 |
+
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)
|
cumo/model/language_model/llava_mistral.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
|
16 |
+
# Copyright 2024 Jiachen Li
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
from torch.nn import CrossEntropyLoss
|
24 |
+
|
25 |
+
from transformers import AutoConfig, AutoModelForCausalLM, \
|
26 |
+
MistralConfig, MistralModel, MistralForCausalLM
|
27 |
+
|
28 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
29 |
+
from transformers.generation.utils import GenerateOutput
|
30 |
+
|
31 |
+
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
32 |
+
|
33 |
+
class LlavaMistralConfig(MistralConfig):
|
34 |
+
model_type = "llava_mistral"
|
35 |
+
|
36 |
+
|
37 |
+
class LlavaMistralModel(LlavaMetaModel, MistralModel):
|
38 |
+
config_class = LlavaMistralConfig
|
39 |
+
|
40 |
+
def __init__(self, config: MistralConfig):
|
41 |
+
super(LlavaMistralModel, self).__init__(config)
|
42 |
+
|
43 |
+
|
44 |
+
class LlavaMistralForCausalLM(MistralForCausalLM, LlavaMetaForCausalLM):
|
45 |
+
config_class = LlavaMistralConfig
|
46 |
+
|
47 |
+
def __init__(self, config):
|
48 |
+
super(MistralForCausalLM, self).__init__(config)
|
49 |
+
self.model = LlavaMistralModel(config)
|
50 |
+
|
51 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
52 |
+
|
53 |
+
# Initialize weights and apply final processing
|
54 |
+
self.post_init()
|
55 |
+
|
56 |
+
def get_model(self):
|
57 |
+
return self.model
|
58 |
+
|
59 |
+
def forward(
|
60 |
+
self,
|
61 |
+
input_ids: torch.LongTensor = None,
|
62 |
+
attention_mask: Optional[torch.Tensor] = None,
|
63 |
+
position_ids: Optional[torch.LongTensor] = None,
|
64 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
65 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
66 |
+
labels: Optional[torch.LongTensor] = None,
|
67 |
+
use_cache: Optional[bool] = None,
|
68 |
+
output_attentions: Optional[bool] = None,
|
69 |
+
output_hidden_states: Optional[bool] = None,
|
70 |
+
images: Optional[torch.FloatTensor] = None,
|
71 |
+
image_sizes: Optional[List[List[int]]] = None,
|
72 |
+
return_dict: Optional[bool] = None,
|
73 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
74 |
+
|
75 |
+
if inputs_embeds is None:
|
76 |
+
(
|
77 |
+
input_ids,
|
78 |
+
position_ids,
|
79 |
+
attention_mask,
|
80 |
+
past_key_values,
|
81 |
+
inputs_embeds,
|
82 |
+
labels,
|
83 |
+
clip_balance_loss,
|
84 |
+
clip_router_z_loss,
|
85 |
+
mlp_balance_loss,
|
86 |
+
mlp_router_z_loss
|
87 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
88 |
+
input_ids,
|
89 |
+
position_ids,
|
90 |
+
attention_mask,
|
91 |
+
past_key_values,
|
92 |
+
labels,
|
93 |
+
images,
|
94 |
+
image_sizes
|
95 |
+
)
|
96 |
+
|
97 |
+
out = super().forward(
|
98 |
+
input_ids=input_ids,
|
99 |
+
attention_mask=attention_mask,
|
100 |
+
position_ids=position_ids,
|
101 |
+
past_key_values=past_key_values,
|
102 |
+
inputs_embeds=inputs_embeds,
|
103 |
+
labels=labels,
|
104 |
+
use_cache=use_cache,
|
105 |
+
output_attentions=output_attentions,
|
106 |
+
output_hidden_states=output_hidden_states,
|
107 |
+
return_dict=return_dict
|
108 |
+
)
|
109 |
+
|
110 |
+
if self.config.training:
|
111 |
+
if self.config.mlp_smoe or self.config.clip_smoe:
|
112 |
+
loss = out['loss']
|
113 |
+
if self.config.local_rank == 0:
|
114 |
+
print('language loss: ', loss.item())
|
115 |
+
if self.config.mlp_smoe:
|
116 |
+
mlp_balance_loss = mlp_balance_loss.sum(dim=-1).mean()
|
117 |
+
mlp_balance_loss = self.config.balance_loss_coef * mlp_balance_loss
|
118 |
+
loss += mlp_balance_loss
|
119 |
+
mlp_router_z_loss = mlp_router_z_loss.sum(dim=-1).mean()
|
120 |
+
mlp_router_z_loss = self.config.router_z_loss_coef * mlp_router_z_loss
|
121 |
+
loss += mlp_router_z_loss
|
122 |
+
if self.config.clip_smoe:
|
123 |
+
clip_balance_loss = clip_balance_loss.sum(dim=-1).mean()
|
124 |
+
clip_balance_loss = self.config.balance_loss_coef * clip_balance_loss
|
125 |
+
loss += clip_balance_loss
|
126 |
+
clip_router_z_loss = clip_router_z_loss.sum(dim=-1).mean()
|
127 |
+
clip_router_z_loss = self.config.router_z_loss_coef * clip_router_z_loss
|
128 |
+
loss += clip_router_z_loss
|
129 |
+
if self.config.local_rank == 0:
|
130 |
+
if self.config.mlp_smoe:
|
131 |
+
print('mlp balance loss: ', mlp_balance_loss.item(), 'mlp router z loss: ', mlp_router_z_loss.item())
|
132 |
+
if self.config.clip_smoe:
|
133 |
+
print('clip balance loss: ', clip_balance_loss.item(), 'clip router z loss: ', clip_router_z_loss.item())
|
134 |
+
out['loss'] = loss
|
135 |
+
|
136 |
+
return out
|
137 |
+
|
138 |
+
@torch.no_grad()
|
139 |
+
def generate(
|
140 |
+
self,
|
141 |
+
inputs: Optional[torch.Tensor] = None,
|
142 |
+
images: Optional[torch.Tensor] = None,
|
143 |
+
image_sizes: Optional[torch.Tensor] = None,
|
144 |
+
**kwargs,
|
145 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
146 |
+
position_ids = kwargs.pop("position_ids", None)
|
147 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
148 |
+
if "inputs_embeds" in kwargs:
|
149 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
150 |
+
if images is not None:
|
151 |
+
(
|
152 |
+
inputs,
|
153 |
+
position_ids,
|
154 |
+
attention_mask,
|
155 |
+
_,
|
156 |
+
inputs_embeds,
|
157 |
+
_,
|
158 |
+
_,
|
159 |
+
_,
|
160 |
+
_,
|
161 |
+
_
|
162 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
163 |
+
inputs,
|
164 |
+
position_ids,
|
165 |
+
attention_mask,
|
166 |
+
None,
|
167 |
+
None,
|
168 |
+
images,
|
169 |
+
image_sizes=image_sizes
|
170 |
+
)
|
171 |
+
else:
|
172 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
173 |
+
|
174 |
+
return super().generate(
|
175 |
+
position_ids=position_ids,
|
176 |
+
attention_mask=attention_mask,
|
177 |
+
inputs_embeds=inputs_embeds,
|
178 |
+
**kwargs
|
179 |
+
)
|
180 |
+
|
181 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
|
182 |
+
inputs_embeds=None, **kwargs):
|
183 |
+
images = kwargs.pop("images", None)
|
184 |
+
image_sizes = kwargs.pop("image_sizes", None)
|
185 |
+
inputs = super().prepare_inputs_for_generation(
|
186 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
187 |
+
)
|
188 |
+
if images is not None:
|
189 |
+
inputs['images'] = images
|
190 |
+
if image_sizes is not None:
|
191 |
+
inputs['image_sizes'] = image_sizes
|
192 |
+
return inputs
|
193 |
+
|
194 |
+
AutoConfig.register("llava_mistral", LlavaMistralConfig)
|
195 |
+
AutoModelForCausalLM.register(LlavaMistralConfig, LlavaMistralForCausalLM)
|
cumo/model/language_model/llava_mixtral.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA) and MoE-LLaVA(https://github.com/PKU-YuanGroup/MoE-LLaVA)
|
16 |
+
# Copyright 2024 Jiachen Li
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
from torch.nn import CrossEntropyLoss
|
24 |
+
|
25 |
+
from transformers import AutoConfig, AutoModelForCausalLM, \
|
26 |
+
MixtralConfig, MixtralModel, MixtralForCausalLM
|
27 |
+
|
28 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
29 |
+
from transformers.generation.utils import GenerateOutput
|
30 |
+
|
31 |
+
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
32 |
+
|
33 |
+
from .smoe_mixtral_helper import SMoECausalLMOutputWithPast, MixtralDecoderLayerMOEBlock_forward
|
34 |
+
|
35 |
+
|
36 |
+
class LlavaMixtralConfig(MixtralConfig):
|
37 |
+
model_type = "llava_mixtral"
|
38 |
+
|
39 |
+
|
40 |
+
class LlavaMixtralModel(LlavaMetaModel, MixtralModel):
|
41 |
+
config_class = LlavaMixtralConfig
|
42 |
+
|
43 |
+
def __init__(self, config: MixtralConfig):
|
44 |
+
super(LlavaMixtralModel, self).__init__(config)
|
45 |
+
|
46 |
+
|
47 |
+
class LlavaMixtralForCausalLM(MixtralForCausalLM, LlavaMetaForCausalLM):
|
48 |
+
config_class = LlavaMixtralConfig
|
49 |
+
|
50 |
+
def __init__(self, config):
|
51 |
+
super(MixtralForCausalLM, self).__init__(config)
|
52 |
+
self.model = LlavaMixtralModel(config)
|
53 |
+
|
54 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
55 |
+
|
56 |
+
# Initialize weights and apply final processing
|
57 |
+
self.post_init()
|
58 |
+
|
59 |
+
def get_model(self):
|
60 |
+
return self.model
|
61 |
+
|
62 |
+
def forward(
|
63 |
+
self,
|
64 |
+
input_ids: torch.LongTensor = None,
|
65 |
+
attention_mask: Optional[torch.Tensor] = None,
|
66 |
+
position_ids: Optional[torch.LongTensor] = None,
|
67 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
68 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
69 |
+
labels: Optional[torch.LongTensor] = None,
|
70 |
+
use_cache: Optional[bool] = None,
|
71 |
+
output_attentions: Optional[bool] = None,
|
72 |
+
output_hidden_states: Optional[bool] = None,
|
73 |
+
images: Optional[torch.FloatTensor] = None,
|
74 |
+
image_sizes: Optional[List[List[int]]] = None,
|
75 |
+
return_dict: Optional[bool] = None,
|
76 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
77 |
+
|
78 |
+
if inputs_embeds is None:
|
79 |
+
(
|
80 |
+
input_ids,
|
81 |
+
position_ids,
|
82 |
+
attention_mask,
|
83 |
+
past_key_values,
|
84 |
+
inputs_embeds,
|
85 |
+
labels,
|
86 |
+
clip_balance_loss,
|
87 |
+
clip_router_z_loss,
|
88 |
+
mlp_balance_loss,
|
89 |
+
mlp_router_z_loss
|
90 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
91 |
+
input_ids,
|
92 |
+
position_ids,
|
93 |
+
attention_mask,
|
94 |
+
past_key_values,
|
95 |
+
labels,
|
96 |
+
images,
|
97 |
+
image_sizes
|
98 |
+
)
|
99 |
+
|
100 |
+
output_router_logits = True
|
101 |
+
### We set output_router_logits to True and squeeze bzloss into outputs.router_logits. This hack implementation needs to be fixed
|
102 |
+
|
103 |
+
outputs = self.model(
|
104 |
+
input_ids=input_ids,
|
105 |
+
attention_mask=attention_mask,
|
106 |
+
position_ids=position_ids,
|
107 |
+
past_key_values=past_key_values,
|
108 |
+
inputs_embeds=inputs_embeds,
|
109 |
+
use_cache=use_cache,
|
110 |
+
output_attentions=output_attentions,
|
111 |
+
output_hidden_states=output_hidden_states,
|
112 |
+
output_router_logits=output_router_logits,
|
113 |
+
return_dict=return_dict,
|
114 |
+
)
|
115 |
+
|
116 |
+
hidden_states = outputs[0]
|
117 |
+
logits = self.lm_head(hidden_states)
|
118 |
+
logits = logits.float()
|
119 |
+
|
120 |
+
loss = None
|
121 |
+
|
122 |
+
if labels is not None:
|
123 |
+
# Shift so that tokens < n predict n
|
124 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
125 |
+
shift_labels = labels[..., 1:].contiguous()
|
126 |
+
# Flatten the tokens
|
127 |
+
loss_fct = CrossEntropyLoss()
|
128 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
129 |
+
shift_labels = shift_labels.view(-1)
|
130 |
+
# Enable model parallelism
|
131 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
132 |
+
loss = loss_fct(shift_logits, shift_labels)
|
133 |
+
|
134 |
+
b_loss = None
|
135 |
+
z_loss = None
|
136 |
+
|
137 |
+
if self.config.training:
|
138 |
+
if self.config.mlp_smoe or self.config.clip_smoe:
|
139 |
+
if self.config.local_rank == 0:
|
140 |
+
print('language loss: ', loss.item())
|
141 |
+
if self.config.mlp_smoe:
|
142 |
+
mlp_balance_loss = mlp_balance_loss.sum(dim=-1).mean()
|
143 |
+
mlp_balance_loss = self.config.balance_loss_coef * mlp_balance_loss
|
144 |
+
loss += mlp_balance_loss
|
145 |
+
mlp_router_z_loss = mlp_router_z_loss.sum(dim=-1).mean()
|
146 |
+
mlp_router_z_loss = self.config.router_z_loss_coef * mlp_router_z_loss
|
147 |
+
loss += mlp_router_z_loss
|
148 |
+
if self.config.local_rank == 0:
|
149 |
+
print('mlp balance loss: ', mlp_balance_loss.item(), 'mlp router z loss: ', mlp_router_z_loss.item())
|
150 |
+
if self.config.clip_smoe:
|
151 |
+
clip_balance_loss = clip_balance_loss.sum(dim=-1).mean()
|
152 |
+
clip_balance_loss = self.config.balance_loss_coef * clip_balance_loss
|
153 |
+
loss += clip_balance_loss
|
154 |
+
clip_router_z_loss = clip_router_z_loss.sum(dim=-1).mean()
|
155 |
+
clip_router_z_loss = self.config.router_z_loss_coef * clip_router_z_loss
|
156 |
+
loss += clip_router_z_loss
|
157 |
+
if self.config.local_rank == 0:
|
158 |
+
print('clip balance loss: ', clip_balance_loss.item(), 'clip router z loss: ', clip_router_z_loss.item())
|
159 |
+
|
160 |
+
balance_loss = [loss_pair[0] for loss_pair in outputs.router_logits]
|
161 |
+
b_loss = sum(balance_loss) / len(balance_loss)
|
162 |
+
b_loss = self.config.balance_loss_coef * b_loss
|
163 |
+
loss += b_loss
|
164 |
+
router_z_loss = [loss_pair[1] for loss_pair in outputs.router_logits]
|
165 |
+
z_loss = sum(router_z_loss) / len(balance_loss)
|
166 |
+
z_loss = self.config.router_z_loss_coef * z_loss
|
167 |
+
loss += z_loss
|
168 |
+
if self.config.local_rank == 0:
|
169 |
+
print('llm balance loss: ', b_loss.item(), 'llm router z loss: ', z_loss.item())
|
170 |
+
|
171 |
+
if not return_dict:
|
172 |
+
output = (logits,) + outputs[1:]
|
173 |
+
return (loss,) + output if loss is not None else output
|
174 |
+
|
175 |
+
return SMoECausalLMOutputWithPast(
|
176 |
+
loss=loss,
|
177 |
+
logits=logits,
|
178 |
+
past_key_values=outputs.past_key_values,
|
179 |
+
hidden_states=outputs.hidden_states,
|
180 |
+
attentions=outputs.attentions,
|
181 |
+
)
|
182 |
+
|
183 |
+
def initialize_smoe_modules(self, model_args):
|
184 |
+
for m in self.model.layers:
|
185 |
+
m.block_sparse_moe.forward = MixtralDecoderLayerMOEBlock_forward(m.block_sparse_moe)
|
186 |
+
|
187 |
+
@torch.no_grad()
|
188 |
+
def generate(
|
189 |
+
self,
|
190 |
+
inputs: Optional[torch.Tensor] = None,
|
191 |
+
images: Optional[torch.Tensor] = None,
|
192 |
+
image_sizes: Optional[torch.Tensor] = None,
|
193 |
+
**kwargs,
|
194 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
195 |
+
position_ids = kwargs.pop("position_ids", None)
|
196 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
197 |
+
if "inputs_embeds" in kwargs:
|
198 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
199 |
+
|
200 |
+
if images is not None:
|
201 |
+
(
|
202 |
+
inputs,
|
203 |
+
position_ids,
|
204 |
+
attention_mask,
|
205 |
+
_,
|
206 |
+
inputs_embeds,
|
207 |
+
_,
|
208 |
+
_,
|
209 |
+
_,
|
210 |
+
_,
|
211 |
+
_
|
212 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
213 |
+
inputs,
|
214 |
+
position_ids,
|
215 |
+
attention_mask,
|
216 |
+
None,
|
217 |
+
None,
|
218 |
+
images,
|
219 |
+
image_sizes=image_sizes
|
220 |
+
)
|
221 |
+
else:
|
222 |
+
inputs_embeds = self.get_model().embed_tokens(inputs)
|
223 |
+
|
224 |
+
return super().generate(
|
225 |
+
position_ids=position_ids,
|
226 |
+
attention_mask=attention_mask,
|
227 |
+
inputs_embeds=inputs_embeds,
|
228 |
+
**kwargs
|
229 |
+
)
|
230 |
+
|
231 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
|
232 |
+
inputs_embeds=None, **kwargs):
|
233 |
+
images = kwargs.pop("images", None)
|
234 |
+
image_sizes = kwargs.pop("image_sizes", None)
|
235 |
+
inputs = super().prepare_inputs_for_generation(
|
236 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
237 |
+
)
|
238 |
+
if images is not None:
|
239 |
+
inputs['images'] = images
|
240 |
+
if image_sizes is not None:
|
241 |
+
inputs['image_sizes'] = image_sizes
|
242 |
+
return inputs
|
243 |
+
|
244 |
+
AutoConfig.register("llava_mixtral", LlavaMixtralConfig)
|
245 |
+
AutoModelForCausalLM.register(LlavaMixtralConfig, LlavaMixtralForCausalLM)
|
cumo/model/language_model/llava_mpt.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from typing import Optional, Tuple
|
17 |
+
|
18 |
+
import torch
|
19 |
+
|
20 |
+
from transformers import AutoConfig, AutoModelForCausalLM, \
|
21 |
+
MptConfig, MptForCausalLM, MptModel
|
22 |
+
from cumo.model.llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
|
23 |
+
|
24 |
+
|
25 |
+
class LlavaMptConfig(MptConfig):
|
26 |
+
model_type = "llava_mpt"
|
27 |
+
|
28 |
+
|
29 |
+
class LlavaMptModel(LlavaMetaModel, MptModel):
|
30 |
+
config_class = LlavaMptConfig
|
31 |
+
|
32 |
+
def __init__(self, config: MptConfig):
|
33 |
+
config.hidden_size = config.d_model
|
34 |
+
super(LlavaMptModel, self).__init__(config)
|
35 |
+
|
36 |
+
def embed_tokens(self, x):
|
37 |
+
return self.wte(x)
|
38 |
+
|
39 |
+
|
40 |
+
class LlavaMptForCausalLM(MptForCausalLM, LlavaMetaForCausalLM):
|
41 |
+
config_class = LlavaMptConfig
|
42 |
+
supports_gradient_checkpointing = True
|
43 |
+
|
44 |
+
def __init__(self, config):
|
45 |
+
super(MptForCausalLM, self).__init__(config)
|
46 |
+
|
47 |
+
self.transformer = LlavaMptModel(config)
|
48 |
+
self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
49 |
+
|
50 |
+
# Initialize weights and apply final processing
|
51 |
+
self.post_init()
|
52 |
+
|
53 |
+
def get_model(self):
|
54 |
+
return self.transformer
|
55 |
+
|
56 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
57 |
+
if isinstance(module, LlavaMptModel):
|
58 |
+
module.gradient_checkpointing = value
|
59 |
+
|
60 |
+
def forward(
|
61 |
+
self,
|
62 |
+
input_ids: Optional[torch.LongTensor] = None,
|
63 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
64 |
+
attention_mask: Optional[torch.Tensor] = None,
|
65 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
66 |
+
labels: Optional[torch.Tensor] = None,
|
67 |
+
use_cache: Optional[bool] = None,
|
68 |
+
output_attentions: Optional[bool] = None,
|
69 |
+
output_hidden_states: Optional[bool] = None,
|
70 |
+
return_dict: Optional[bool] = None,
|
71 |
+
images=None):
|
72 |
+
|
73 |
+
input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images)
|
74 |
+
|
75 |
+
return super().forward(
|
76 |
+
input_ids,
|
77 |
+
past_key_values=past_key_values,
|
78 |
+
attention_mask=attention_mask,
|
79 |
+
inputs_embeds=inputs_embeds,
|
80 |
+
labels=labels,
|
81 |
+
use_cache=use_cache,
|
82 |
+
output_attentions=output_attentions,
|
83 |
+
output_hidden_states=output_hidden_states,
|
84 |
+
return_dict=return_dict,
|
85 |
+
)
|
86 |
+
|
87 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
88 |
+
images = kwargs.pop("images", None)
|
89 |
+
_inputs = super().prepare_inputs_for_generation(
|
90 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
91 |
+
)
|
92 |
+
_inputs['images'] = images
|
93 |
+
return _inputs
|
94 |
+
|
95 |
+
|
96 |
+
AutoConfig.register("llava_mpt", LlavaMptConfig)
|
97 |
+
AutoModelForCausalLM.register(LlavaMptConfig, LlavaMptForCausalLM)
|
cumo/model/language_model/smoe_mixtral_helper.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Modified from MoE-LLaVA(https://github.com/PKU-YuanGroup/MoE-LLaVA)
|
3 |
+
# ------------------------------------------------------------------------
|
4 |
+
|
5 |
+
from typing import List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from torch.nn import CrossEntropyLoss
|
10 |
+
|
11 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
12 |
+
|
13 |
+
from dataclasses import dataclass
|
14 |
+
from einops import rearrange, repeat, reduce, pack, unpack
|
15 |
+
|
16 |
+
from transformers.utils import ModelOutput
|
17 |
+
from transformers.activations import ACT2FN
|
18 |
+
|
19 |
+
|
20 |
+
def MixtralDecoderLayerMOEBlock_forward(self):
|
21 |
+
def forward(hidden_states: torch.Tensor):
|
22 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
23 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
24 |
+
# router_logits: (batch * sequence_length, n_experts)
|
25 |
+
router_logits = self.gate(hidden_states)
|
26 |
+
|
27 |
+
router_z_loss = torch.logsumexp(router_logits, dim = -1)
|
28 |
+
router_z_loss = torch.square(router_z_loss)
|
29 |
+
router_z_loss = router_z_loss.mean()
|
30 |
+
|
31 |
+
routing_weights = nn.functional.softmax(router_logits, dim=1, dtype=torch.float)
|
32 |
+
|
33 |
+
density_1_proxy = reduce(routing_weights, '... n e -> ... e', 'mean')
|
34 |
+
|
35 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
36 |
+
|
37 |
+
one_hot_gate_indices = nn.functional.one_hot(rearrange(selected_experts, '... k -> k ...'), self.num_experts).float()[0]
|
38 |
+
density_1 = reduce(one_hot_gate_indices, '... n e -> ... e', 'mean')
|
39 |
+
balance_loss = (density_1_proxy * density_1).mean() * float(self.num_experts ** 2)
|
40 |
+
|
41 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
42 |
+
# we cast back to the input dtype
|
43 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
44 |
+
|
45 |
+
final_hidden_states = torch.zeros(
|
46 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
47 |
+
)
|
48 |
+
|
49 |
+
# One hot encode the selected experts to create an expert mask
|
50 |
+
# this will be used to easily index which expert is going to be sollicitated
|
51 |
+
expert_mask = nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
52 |
+
|
53 |
+
# Loop over all available experts in the model and perform the computation on each expert
|
54 |
+
for expert_idx in range(self.num_experts):
|
55 |
+
expert_layer = self.experts[expert_idx]
|
56 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
57 |
+
|
58 |
+
if top_x.shape[0] == 0:
|
59 |
+
continue
|
60 |
+
|
61 |
+
# in torch it is faster to index using lists than torch tensors
|
62 |
+
top_x_list = top_x.tolist()
|
63 |
+
idx_list = idx.tolist()
|
64 |
+
|
65 |
+
# Index the correct hidden states and compute the expert hidden state for
|
66 |
+
# the current expert. We need to make sure to multiply the output hidden
|
67 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
68 |
+
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
|
69 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
|
70 |
+
|
71 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
72 |
+
# the `top_x` tensor here.
|
73 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
74 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
75 |
+
|
76 |
+
return final_hidden_states, (balance_loss, router_z_loss)
|
77 |
+
return forward
|
78 |
+
|
79 |
+
@dataclass
|
80 |
+
class SMoECausalLMOutputWithPast(ModelOutput):
|
81 |
+
loss: Optional[torch.FloatTensor] = None
|
82 |
+
logits: torch.FloatTensor = None
|
83 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
84 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
85 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
cumo/model/llava_arch.py
ADDED
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
|
16 |
+
# Copyright 2024 Jiachen Li
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
from abc import ABC, abstractmethod
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
|
24 |
+
from .multimodal_encoder.builder import build_vision_tower
|
25 |
+
from .multimodal_projector.builder import build_vision_projector
|
26 |
+
|
27 |
+
from cumo.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
28 |
+
|
29 |
+
from cumo.mm_utils import get_anyres_image_grid_shape
|
30 |
+
|
31 |
+
class LlavaMetaModel:
|
32 |
+
|
33 |
+
def __init__(self, config):
|
34 |
+
super(LlavaMetaModel, self).__init__(config)
|
35 |
+
|
36 |
+
if hasattr(config, "mm_vision_tower"):
|
37 |
+
self.vision_tower = build_vision_tower(config, delay_load=True)
|
38 |
+
self.mm_projector = build_vision_projector(config)
|
39 |
+
|
40 |
+
if 'unpad' in getattr(config, 'mm_patch_merge_type', ''):
|
41 |
+
self.image_newline = nn.Parameter(
|
42 |
+
torch.empty(config.hidden_size, dtype=self.dtype)
|
43 |
+
)
|
44 |
+
|
45 |
+
def get_vision_tower(self):
|
46 |
+
vision_tower = getattr(self, 'vision_tower', None)
|
47 |
+
if type(vision_tower) is list:
|
48 |
+
vision_tower = vision_tower[0]
|
49 |
+
return vision_tower
|
50 |
+
|
51 |
+
def initialize_vision_modules(self, model_args, fsdp=None):
|
52 |
+
vision_tower = model_args.vision_tower
|
53 |
+
mm_vision_select_layer = model_args.mm_vision_select_layer
|
54 |
+
mm_vision_select_feature = model_args.mm_vision_select_feature
|
55 |
+
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
|
56 |
+
vision_tower_dir = model_args.vision_tower_dir
|
57 |
+
mm_patch_merge_type = model_args.mm_patch_merge_type
|
58 |
+
|
59 |
+
self.config.mm_vision_tower = vision_tower
|
60 |
+
self.config.scales = model_args.scales
|
61 |
+
|
62 |
+
vision_tower = build_vision_tower(model_args)
|
63 |
+
|
64 |
+
if fsdp is not None and len(fsdp) > 0:
|
65 |
+
self.vision_tower = [vision_tower]
|
66 |
+
else:
|
67 |
+
self.vision_tower = vision_tower
|
68 |
+
|
69 |
+
self.config.use_mm_proj = True
|
70 |
+
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
|
71 |
+
self.config.mm_hidden_size = vision_tower.hidden_size
|
72 |
+
self.config.mm_vision_select_layer = mm_vision_select_layer
|
73 |
+
self.config.mm_vision_select_feature = mm_vision_select_feature
|
74 |
+
self.config.mm_patch_merge_type = mm_patch_merge_type
|
75 |
+
self.config.num_experts = model_args.num_experts
|
76 |
+
self.config.num_selected = model_args.num_selected
|
77 |
+
self.config.num_layers = model_args.num_layers
|
78 |
+
self.config.dropout = model_args.dropout
|
79 |
+
self.config.mlp_smoe = model_args.mlp_smoe
|
80 |
+
self.config.clip_smoe = model_args.clip_smoe
|
81 |
+
|
82 |
+
self.mm_projector = build_vision_projector(self.config)
|
83 |
+
|
84 |
+
if 'unpad' in mm_patch_merge_type:
|
85 |
+
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
|
86 |
+
self.image_newline = nn.Parameter(
|
87 |
+
torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std
|
88 |
+
)
|
89 |
+
|
90 |
+
if pretrain_mm_mlp_adapter is not None:
|
91 |
+
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
92 |
+
def get_w(weights, keyword):
|
93 |
+
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
|
94 |
+
|
95 |
+
if self.config.mlp_smoe:
|
96 |
+
for i in range(model_args.num_experts):
|
97 |
+
self.mm_projector.experts[i].load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
|
98 |
+
else:
|
99 |
+
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
|
100 |
+
|
101 |
+
if vision_tower_dir is not None:
|
102 |
+
vision_tower_weights = torch.load(vision_tower_dir, map_location='cpu')
|
103 |
+
self.vision_tower.load_state_dict(vision_tower_weights, strict=False)
|
104 |
+
if self.config.clip_smoe:
|
105 |
+
current_staet_dict = self.vision_tower.state_dict()
|
106 |
+
for key, value in current_staet_dict.items():
|
107 |
+
if 'experts' in key:
|
108 |
+
key_splits = key.split('.')
|
109 |
+
new_key = [key_splits[0], key_splits[1], key_splits[2], key_splits[3], 'mlp', key_splits[6], key_splits[7]]
|
110 |
+
current_staet_dict[key] = vision_tower_weights['.'.join(new_key)]
|
111 |
+
self.vision_tower.load_state_dict(current_staet_dict, strict=True)
|
112 |
+
|
113 |
+
def unpad_image(tensor, original_size):
|
114 |
+
"""
|
115 |
+
Unpads a PyTorch tensor of a padded and resized image.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
|
119 |
+
original_size (tuple): The original size of the image (height, width).
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
torch.Tensor: The unpadded image tensor.
|
123 |
+
"""
|
124 |
+
original_width, original_height = original_size
|
125 |
+
current_height, current_width = tensor.shape[1:]
|
126 |
+
|
127 |
+
original_aspect_ratio = original_width / original_height
|
128 |
+
current_aspect_ratio = current_width / current_height
|
129 |
+
|
130 |
+
if original_aspect_ratio > current_aspect_ratio:
|
131 |
+
scale_factor = current_width / original_width
|
132 |
+
new_height = int(original_height * scale_factor)
|
133 |
+
padding = (current_height - new_height) // 2
|
134 |
+
unpadded_tensor = tensor[:, padding:current_height - padding, :]
|
135 |
+
else:
|
136 |
+
scale_factor = current_height / original_height
|
137 |
+
new_width = int(original_width * scale_factor)
|
138 |
+
padding = (current_width - new_width) // 2
|
139 |
+
unpadded_tensor = tensor[:, :, padding:current_width - padding]
|
140 |
+
|
141 |
+
return unpadded_tensor
|
142 |
+
|
143 |
+
|
144 |
+
class LlavaMetaForCausalLM(ABC):
|
145 |
+
|
146 |
+
@abstractmethod
|
147 |
+
def get_model(self):
|
148 |
+
pass
|
149 |
+
|
150 |
+
def get_vision_tower(self):
|
151 |
+
return self.get_model().get_vision_tower()
|
152 |
+
|
153 |
+
def prepare_inputs_labels_for_multimodal(
|
154 |
+
self, input_ids, position_ids, attention_mask, past_key_values, labels,
|
155 |
+
images, image_sizes=None
|
156 |
+
):
|
157 |
+
clip_balanced_loss = None
|
158 |
+
clip_router_z_loss = None
|
159 |
+
mlp_balanced_loss = None
|
160 |
+
mlp_router_z_loss = None
|
161 |
+
vision_tower = self.get_vision_tower()
|
162 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
163 |
+
return input_ids, position_ids, attention_mask, past_key_values, None, labels, clip_balanced_loss, clip_router_z_loss, mlp_balanced_loss, mlp_router_z_loss
|
164 |
+
|
165 |
+
if type(images) is list or images.ndim == 5:
|
166 |
+
if type(images) is list:
|
167 |
+
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
|
168 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
169 |
+
image_features, clip_balanced_loss, clip_router_z_loss = self.get_model().get_vision_tower()(images)
|
170 |
+
image_features, mlp_balanced_loss, mlp_router_z_loss = self.get_model().mm_projector(image_features)
|
171 |
+
split_sizes = [image.shape[0] for image in images]
|
172 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
173 |
+
mm_patch_merge_type = getattr(self.config, 'mm_patch_merge_type', 'flat')
|
174 |
+
image_aspect_ratio = getattr(self.config, 'image_aspect_ratio', 'square')
|
175 |
+
if mm_patch_merge_type == 'flat':
|
176 |
+
image_features = [x.flatten(0, 1) for x in image_features]
|
177 |
+
elif mm_patch_merge_type.startswith('spatial'):
|
178 |
+
new_image_features = []
|
179 |
+
for image_idx, image_feature in enumerate(image_features):
|
180 |
+
if image_feature.shape[0] > 1:
|
181 |
+
base_image_feature = image_feature[0]
|
182 |
+
image_feature = image_feature[1:]
|
183 |
+
height = width = self.get_vision_tower().num_patches_per_side
|
184 |
+
assert height * width == base_image_feature.shape[0]
|
185 |
+
if image_aspect_ratio == 'anyres':
|
186 |
+
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, self.get_vision_tower().config.image_size)
|
187 |
+
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
|
188 |
+
else:
|
189 |
+
raise NotImplementedError
|
190 |
+
if 'unpad' in mm_patch_merge_type:
|
191 |
+
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
|
192 |
+
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
|
193 |
+
image_feature = unpad_image(image_feature, image_sizes[image_idx])
|
194 |
+
image_feature = torch.cat((
|
195 |
+
image_feature,
|
196 |
+
self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
|
197 |
+
), dim=-1)
|
198 |
+
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
199 |
+
else:
|
200 |
+
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
|
201 |
+
image_feature = image_feature.flatten(0, 3)
|
202 |
+
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
203 |
+
else:
|
204 |
+
image_feature = image_feature[0]
|
205 |
+
if 'unpad' in mm_patch_merge_type:
|
206 |
+
image_feature = torch.cat((
|
207 |
+
image_feature,
|
208 |
+
self.model.image_newline[None].to(image_feature.device)
|
209 |
+
), dim=0)
|
210 |
+
new_image_features.append(image_feature)
|
211 |
+
image_features = new_image_features
|
212 |
+
else:
|
213 |
+
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
|
214 |
+
else:
|
215 |
+
image_features, clip_balanced_loss, clip_router_z_loss = self.get_model().get_vision_tower()(images)
|
216 |
+
if self.config.mlp_smoe:
|
217 |
+
image_features, mlp_balanced_loss, mlp_router_z_loss = self.get_model().mm_projector(image_features)
|
218 |
+
else:
|
219 |
+
image_features = self.get_model().mm_projector(image_features)
|
220 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
221 |
+
raise NotImplementedError
|
222 |
+
# Let's just add dummy tensors if they do not exist,
|
223 |
+
# it is a headache to deal with None all the time.
|
224 |
+
# But it is not ideal, and if you have a better idea,
|
225 |
+
# please open an issue / submit a PR, thanks.
|
226 |
+
_labels = labels
|
227 |
+
_position_ids = position_ids
|
228 |
+
_attention_mask = attention_mask
|
229 |
+
if attention_mask is None:
|
230 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
231 |
+
else:
|
232 |
+
attention_mask = attention_mask.bool()
|
233 |
+
if position_ids is None:
|
234 |
+
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
235 |
+
if labels is None:
|
236 |
+
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
237 |
+
|
238 |
+
# remove the padding using attention_mask -- FIXME
|
239 |
+
_input_ids = input_ids
|
240 |
+
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
241 |
+
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
242 |
+
|
243 |
+
new_input_embeds = []
|
244 |
+
new_labels = []
|
245 |
+
cur_image_idx = 0
|
246 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
247 |
+
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
248 |
+
if num_images == 0:
|
249 |
+
cur_image_features = image_features[cur_image_idx]
|
250 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
|
251 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
252 |
+
new_input_embeds.append(cur_input_embeds)
|
253 |
+
new_labels.append(labels[batch_idx])
|
254 |
+
cur_image_idx += 1
|
255 |
+
continue
|
256 |
+
|
257 |
+
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
|
258 |
+
cur_input_ids_noim = []
|
259 |
+
cur_labels = labels[batch_idx]
|
260 |
+
cur_labels_noim = []
|
261 |
+
for i in range(len(image_token_indices) - 1):
|
262 |
+
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
263 |
+
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
264 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
265 |
+
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
|
266 |
+
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
267 |
+
cur_new_input_embeds = []
|
268 |
+
cur_new_labels = []
|
269 |
+
|
270 |
+
for i in range(num_images + 1):
|
271 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
272 |
+
cur_new_labels.append(cur_labels_noim[i])
|
273 |
+
if i < num_images:
|
274 |
+
cur_image_features = image_features[cur_image_idx]
|
275 |
+
cur_image_idx += 1
|
276 |
+
cur_new_input_embeds.append(cur_image_features)
|
277 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
|
278 |
+
|
279 |
+
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
|
280 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
281 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
282 |
+
|
283 |
+
new_input_embeds.append(cur_new_input_embeds)
|
284 |
+
new_labels.append(cur_new_labels)
|
285 |
+
|
286 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
287 |
+
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
288 |
+
if tokenizer_model_max_length is not None:
|
289 |
+
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
290 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
291 |
+
|
292 |
+
# Combine them
|
293 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
294 |
+
batch_size = len(new_input_embeds)
|
295 |
+
|
296 |
+
new_input_embeds_padded = []
|
297 |
+
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
298 |
+
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
|
299 |
+
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
300 |
+
|
301 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
302 |
+
cur_len = cur_new_embed.shape[0]
|
303 |
+
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
|
304 |
+
new_input_embeds_padded.append(torch.cat((
|
305 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
306 |
+
cur_new_embed
|
307 |
+
), dim=0))
|
308 |
+
if cur_len > 0:
|
309 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
310 |
+
attention_mask[i, -cur_len:] = True
|
311 |
+
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
312 |
+
else:
|
313 |
+
new_input_embeds_padded.append(torch.cat((
|
314 |
+
cur_new_embed,
|
315 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
316 |
+
), dim=0))
|
317 |
+
if cur_len > 0:
|
318 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
319 |
+
attention_mask[i, :cur_len] = True
|
320 |
+
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
321 |
+
|
322 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
323 |
+
|
324 |
+
if _labels is None:
|
325 |
+
new_labels = None
|
326 |
+
else:
|
327 |
+
new_labels = new_labels_padded
|
328 |
+
|
329 |
+
if _attention_mask is None:
|
330 |
+
attention_mask = None
|
331 |
+
else:
|
332 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
333 |
+
|
334 |
+
if _position_ids is None:
|
335 |
+
position_ids = None
|
336 |
+
|
337 |
+
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels, clip_balanced_loss, clip_router_z_loss, mlp_balanced_loss, mlp_router_z_loss
|
338 |
+
|
339 |
+
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
340 |
+
if model_args.mm_use_im_patch_token:
|
341 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
342 |
+
self.resize_token_embeddings(len(tokenizer))
|
343 |
+
|
344 |
+
if model_args.mm_use_im_start_end:
|
345 |
+
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
346 |
+
self.resize_token_embeddings(len(tokenizer))
|
347 |
+
|
348 |
+
if num_new_tokens > 0:
|
349 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
350 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
351 |
+
|
352 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
353 |
+
dim=0, keepdim=True)
|
354 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
355 |
+
dim=0, keepdim=True)
|
356 |
+
|
357 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
358 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
359 |
+
|
360 |
+
if model_args.tune_mm_mlp_adapter:
|
361 |
+
for p in self.get_input_embeddings().parameters():
|
362 |
+
p.requires_grad = True
|
363 |
+
for p in self.get_output_embeddings().parameters():
|
364 |
+
p.requires_grad = False
|
365 |
+
|
366 |
+
if model_args.pretrain_mm_mlp_adapter:
|
367 |
+
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
|
368 |
+
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
|
369 |
+
assert num_new_tokens == 2
|
370 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
371 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
|
372 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
373 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
374 |
+
else:
|
375 |
+
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
376 |
+
elif model_args.mm_use_im_patch_token:
|
377 |
+
if model_args.tune_mm_mlp_adapter:
|
378 |
+
for p in self.get_input_embeddings().parameters():
|
379 |
+
p.requires_grad = False
|
380 |
+
for p in self.get_output_embeddings().parameters():
|
381 |
+
p.requires_grad = False
|
cumo/model/multimodal_encoder/builder.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from .clip_encoder import CLIPVisionTower
|
3 |
+
|
4 |
+
def build_vision_tower(vision_tower_cfg, **kwargs):
|
5 |
+
vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None))
|
6 |
+
is_absolute_path_exists = os.path.exists(vision_tower)
|
7 |
+
if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion"):
|
8 |
+
return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
|
9 |
+
|
10 |
+
raise ValueError(f'Unknown vision tower: {vision_tower}')
|
cumo/model/multimodal_encoder/clip.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018- The Hugging Face team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from CLIP (https://github.com/huggingface/transformers)
|
16 |
+
# Copyright 2024 Jiachen Li
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
|
22 |
+
from typing import Dict, Optional, Sequence, List
|
23 |
+
|
24 |
+
from transformers.activations import ACT2FN
|
25 |
+
|
26 |
+
class CLIPAttention(nn.Module):
|
27 |
+
def __init__(self, config):
|
28 |
+
super().__init__()
|
29 |
+
self.config = config
|
30 |
+
self.embed_dim = config.hidden_size
|
31 |
+
self.num_heads = config.num_attention_heads
|
32 |
+
self.head_dim = self.embed_dim // self.num_heads
|
33 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
34 |
+
raise ValueError(
|
35 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
36 |
+
f" {self.num_heads})."
|
37 |
+
)
|
38 |
+
self.scale = self.head_dim**-0.5
|
39 |
+
self.dropout = config.attention_dropout
|
40 |
+
|
41 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
42 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
43 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
44 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
45 |
+
|
46 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
47 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
48 |
+
|
49 |
+
def forward(
|
50 |
+
self,
|
51 |
+
hidden_states: torch.Tensor,
|
52 |
+
):
|
53 |
+
"""Input shape: Batch x Time x Channel"""
|
54 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
55 |
+
|
56 |
+
# get query proj
|
57 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
58 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
59 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
60 |
+
|
61 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
62 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
63 |
+
key_states = key_states.view(*proj_shape)
|
64 |
+
value_states = value_states.view(*proj_shape)
|
65 |
+
|
66 |
+
src_len = key_states.size(1)
|
67 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
68 |
+
|
69 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
70 |
+
raise ValueError(
|
71 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
72 |
+
f" {attn_weights.size()}"
|
73 |
+
)
|
74 |
+
|
75 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
76 |
+
|
77 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
78 |
+
|
79 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
80 |
+
|
81 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
82 |
+
raise ValueError(
|
83 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
84 |
+
f" {attn_output.size()}"
|
85 |
+
)
|
86 |
+
|
87 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
88 |
+
attn_output = attn_output.transpose(1, 2)
|
89 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
90 |
+
|
91 |
+
attn_output = self.out_proj(attn_output)
|
92 |
+
|
93 |
+
return attn_output
|
94 |
+
|
95 |
+
|
96 |
+
class CLIPMLP(nn.Module):
|
97 |
+
def __init__(self, config):
|
98 |
+
super().__init__()
|
99 |
+
self.config = config
|
100 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
101 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
102 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
103 |
+
|
104 |
+
def forward(self, hidden_states):
|
105 |
+
hidden_states = self.fc1(hidden_states)
|
106 |
+
hidden_states = self.activation_fn(hidden_states)
|
107 |
+
hidden_states = self.fc2(hidden_states)
|
108 |
+
return hidden_states
|
109 |
+
|
110 |
+
class CLIPEncoderLayer(nn.Module):
|
111 |
+
def __init__(self, config):
|
112 |
+
super().__init__()
|
113 |
+
self.embed_dim = config.hidden_size
|
114 |
+
self.self_attn = CLIPAttention(config)
|
115 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
116 |
+
self.mlp = CLIPMLP(config)
|
117 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
118 |
+
|
119 |
+
def forward(
|
120 |
+
self,
|
121 |
+
hidden_states
|
122 |
+
):
|
123 |
+
residual = hidden_states
|
124 |
+
|
125 |
+
hidden_states = self.layer_norm1(hidden_states)
|
126 |
+
hidden_states = self.self_attn(hidden_states)
|
127 |
+
hidden_states = residual + hidden_states
|
128 |
+
|
129 |
+
residual = hidden_states
|
130 |
+
hidden_states = self.layer_norm2(hidden_states)
|
131 |
+
hidden_states = self.mlp(hidden_states)
|
132 |
+
hidden_states = residual + hidden_states
|
133 |
+
|
134 |
+
outputs = (hidden_states,)
|
135 |
+
return outputs
|
136 |
+
|
137 |
+
class CLIPEncoder(nn.Module):
|
138 |
+
def __init__(self, config):
|
139 |
+
super().__init__()
|
140 |
+
self.config = config
|
141 |
+
self.layers = nn.ModuleList([CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
142 |
+
|
143 |
+
def forward(
|
144 |
+
self,
|
145 |
+
inputs_embeds
|
146 |
+
):
|
147 |
+
encoder_states = ()
|
148 |
+
hidden_states = inputs_embeds
|
149 |
+
for idx, encoder_layer in enumerate(self.layers):
|
150 |
+
encoder_states = encoder_states + (hidden_states,)
|
151 |
+
layer_outputs = encoder_layer(hidden_states)
|
152 |
+
hidden_states = layer_outputs[0]
|
153 |
+
return encoder_states
|
154 |
+
|
155 |
+
class CLIPVisionEmbeddings(nn.Module):
|
156 |
+
def __init__(self, config):
|
157 |
+
super().__init__()
|
158 |
+
self.config = config
|
159 |
+
self.embed_dim = config.hidden_size
|
160 |
+
self.image_size = config.image_size
|
161 |
+
self.patch_size = config.patch_size
|
162 |
+
|
163 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
164 |
+
|
165 |
+
self.patch_embedding = nn.Conv2d(
|
166 |
+
in_channels=config.num_channels,
|
167 |
+
out_channels=self.embed_dim,
|
168 |
+
kernel_size=self.patch_size,
|
169 |
+
stride=self.patch_size,
|
170 |
+
bias=False,
|
171 |
+
)
|
172 |
+
|
173 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
174 |
+
self.num_positions = self.num_patches + 1
|
175 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
176 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
177 |
+
|
178 |
+
def forward(self, pixel_values):
|
179 |
+
batch_size = pixel_values.shape[0]
|
180 |
+
target_dtype = self.patch_embedding.weight.dtype
|
181 |
+
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
182 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
183 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
184 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
185 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
186 |
+
return embeddings
|
187 |
+
|
188 |
+
class CLIPVisionTransformer(nn.Module):
|
189 |
+
def __init__(self, config):
|
190 |
+
super().__init__()
|
191 |
+
self.config = config
|
192 |
+
embed_dim = config.hidden_size
|
193 |
+
|
194 |
+
self.embeddings = CLIPVisionEmbeddings(config)
|
195 |
+
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
196 |
+
self.encoder = CLIPEncoder(config)
|
197 |
+
|
198 |
+
def forward(
|
199 |
+
self,
|
200 |
+
pixel_values
|
201 |
+
):
|
202 |
+
hidden_states = self.embeddings(pixel_values)
|
203 |
+
hidden_states = self.pre_layrnorm(hidden_states)
|
204 |
+
encoder_outputs = self.encoder(hidden_states)
|
205 |
+
return encoder_outputs[-1]
|
cumo/model/multimodal_encoder/clip_encoder.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ------------------------------------------------------------------------
|
2 |
+
# Copyright 2023 Haotian Liu
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
# ------------------------------------------------------------------------
|
16 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA) and S^2(https://github.com/bfshi/scaling_on_scales)
|
17 |
+
# Copyright 2024 Jiachen Li
|
18 |
+
# ------------------------------------------------------------------------
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
|
23 |
+
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
|
24 |
+
|
25 |
+
import torch.nn.functional as F
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
|
28 |
+
import math
|
29 |
+
from einops import rearrange
|
30 |
+
|
31 |
+
from .clip import CLIPVisionTransformer
|
32 |
+
from .clip_smoe import CLIPSMoEVisionTransformer
|
33 |
+
|
34 |
+
class CLIPVisionTower(nn.Module):
|
35 |
+
def __init__(self, vision_tower, args, delay_load=False):
|
36 |
+
super().__init__()
|
37 |
+
self.vision_tower_name = vision_tower
|
38 |
+
self.select_layer = args.mm_vision_select_layer
|
39 |
+
self.clip_smoe = args.clip_smoe
|
40 |
+
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
|
41 |
+
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)
|
42 |
+
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
|
43 |
+
self.scales = args.scales
|
44 |
+
if args.clip_smoe:
|
45 |
+
self.vision_model = CLIPSMoEVisionTransformer(self.cfg_only, num_experts=args.num_experts, num_selected=args.num_selected)
|
46 |
+
else:
|
47 |
+
self.vision_model = CLIPVisionTransformer(self.cfg_only)
|
48 |
+
self.is_loaded = True
|
49 |
+
|
50 |
+
def feature_select(self, image_features):
|
51 |
+
#image_features = image_forward_outs.hidden_states[self.select_layer]
|
52 |
+
if self.select_feature == 'patch':
|
53 |
+
image_features = image_features[:, 1:]
|
54 |
+
elif self.select_feature == 'cls_patch':
|
55 |
+
image_features = image_features
|
56 |
+
else:
|
57 |
+
raise ValueError(f'Unexpected select feature: {self.select_feature}')
|
58 |
+
return image_features
|
59 |
+
|
60 |
+
def split_chessboard(self, x, num_split):
|
61 |
+
"""
|
62 |
+
x: b * c * h * w
|
63 |
+
Deividing x into num_split**2 sub-squares, and concatenate all the sub-squares on the batch dimension
|
64 |
+
"""
|
65 |
+
B, C, H, W = x.shape
|
66 |
+
assert H % num_split == 0 and W % num_split == 0
|
67 |
+
h, w = H // num_split, W // num_split
|
68 |
+
x_split = torch.cat([x[:, :, i*h:(i+1)*h, j*w:(j+1)*w] for i in range(num_split) for j in range(num_split)], dim=0)
|
69 |
+
return x_split
|
70 |
+
|
71 |
+
def merge_chessboard(self, x, num_split):
|
72 |
+
"""
|
73 |
+
x: b * c * h * w
|
74 |
+
Assuming x contains num_split**2 sub-squares concatenated along batch dimension, merge the sub-squares back to the original whole square.
|
75 |
+
(inverse of split_chessboard)
|
76 |
+
"""
|
77 |
+
B, C, H, W = x.shape
|
78 |
+
assert B % (num_split**2) == 0
|
79 |
+
b = B // (num_split**2)
|
80 |
+
x_merge = torch.cat([torch.cat([x[(i*num_split + j)*b:(i*num_split + j + 1)*b] for j in range(num_split)], dim=-1) for i in range(num_split)], dim=-2)
|
81 |
+
return x_merge
|
82 |
+
|
83 |
+
def forward(self, images):
|
84 |
+
if type(images) is list:
|
85 |
+
image_features = []
|
86 |
+
for image in images:
|
87 |
+
image_forward_out = self.vision_model(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
|
88 |
+
image_feature = self.feature_select(image_forward_out).to(image.dtype)
|
89 |
+
image_features.append(image_feature)
|
90 |
+
else:
|
91 |
+
input_size = images.shape[3]
|
92 |
+
img_sizes = [int(input_size * scale) for scale in self.scales]
|
93 |
+
num_splits = [math.ceil(size / input_size) for size in img_sizes]
|
94 |
+
image_pyramids = [images]
|
95 |
+
for i, (size, num_split) in enumerate(zip(img_sizes, num_splits)):
|
96 |
+
if i > 0:
|
97 |
+
x = F.interpolate(images.to(torch.float32), size=size, mode='bicubic').to(images.dtype)
|
98 |
+
x = self.split_chessboard(x, num_split=num_split)
|
99 |
+
image_pyramids.append(x)
|
100 |
+
if self.clip_smoe:
|
101 |
+
image_features = []
|
102 |
+
balance_losses = []
|
103 |
+
router_z_losses = []
|
104 |
+
for i, (x, num_split) in enumerate(zip(image_pyramids, num_splits)):
|
105 |
+
out_x, balance_loss, router_z_loss = self.vision_model(x)
|
106 |
+
out_x = self.feature_select(out_x)
|
107 |
+
if i > 0:
|
108 |
+
out_x = rearrange(out_x, 'b (h w) c -> b c h w', h=int(out_x.shape[1] ** 0.5), w=int(out_x.shape[1] ** 0.5))
|
109 |
+
out_x = self.merge_chessboard(out_x, num_split=num_split)
|
110 |
+
out_x = F.interpolate(out_x.to(torch.float32), size=int(image_features[0].shape[1] ** 0.5), mode='area').to(x.dtype)
|
111 |
+
out_x = rearrange(out_x, 'b c h w -> b (h w) c')
|
112 |
+
image_features.append(out_x)
|
113 |
+
balance_losses.append(balance_loss)
|
114 |
+
router_z_losses.append(router_z_loss)
|
115 |
+
image_features = torch.cat(image_features, dim=-1)
|
116 |
+
return image_features, torch.stack(balance_losses).mean(), torch.stack(router_z_losses).mean()
|
117 |
+
else:
|
118 |
+
image_features = []
|
119 |
+
for i, (x, num_split) in enumerate(zip(image_pyramids, num_splits)):
|
120 |
+
out_x = self.vision_model(x)
|
121 |
+
out_x = self.feature_select(out_x)
|
122 |
+
if i > 0:
|
123 |
+
out_x = rearrange(out_x, 'b (h w) c -> b c h w', h=int(out_x.shape[1] ** 0.5), w=int(out_x.shape[1] ** 0.5))
|
124 |
+
out_x = self.merge_chessboard(out_x, num_split=num_split)
|
125 |
+
out_x = F.interpolate(out_x.to(torch.float32), size=int(image_features[0].shape[1] ** 0.5), mode='area').to(x.dtype)
|
126 |
+
out_x = rearrange(out_x, 'b c h w -> b (h w) c')
|
127 |
+
image_features.append(out_x)
|
128 |
+
image_features = torch.cat(image_features, dim=-1)
|
129 |
+
return image_features, None, None
|
130 |
+
|
131 |
+
@property
|
132 |
+
def dummy_feature(self):
|
133 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
134 |
+
|
135 |
+
@property
|
136 |
+
def dtype(self):
|
137 |
+
return self.vision_model.dtype
|
138 |
+
|
139 |
+
@property
|
140 |
+
def device(self):
|
141 |
+
return self.vision_model.device
|
142 |
+
|
143 |
+
@property
|
144 |
+
def config(self):
|
145 |
+
if self.is_loaded:
|
146 |
+
return self.vision_model.config
|
147 |
+
else:
|
148 |
+
return self.cfg_only
|
149 |
+
|
150 |
+
@property
|
151 |
+
def hidden_size(self):
|
152 |
+
return self.config.hidden_size
|
153 |
+
|
154 |
+
@property
|
155 |
+
def num_patches_per_side(self):
|
156 |
+
return self.config.image_size // self.config.patch_size
|
157 |
+
|
158 |
+
@property
|
159 |
+
def num_patches(self):
|
160 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
cumo/model/multimodal_encoder/clip_smoe.py
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2018- The Hugging Face team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from CLIP (https://github.com/huggingface/transformers)
|
16 |
+
# Copyright 2024 Jiachen Li
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
|
22 |
+
from typing import Dict, Optional, Sequence, List
|
23 |
+
|
24 |
+
from transformers.activations import ACT2FN
|
25 |
+
from einops import rearrange, repeat, reduce, pack, unpack
|
26 |
+
|
27 |
+
class CLIPAttention(nn.Module):
|
28 |
+
def __init__(self, config):
|
29 |
+
super().__init__()
|
30 |
+
self.config = config
|
31 |
+
self.embed_dim = config.hidden_size
|
32 |
+
self.num_heads = config.num_attention_heads
|
33 |
+
self.head_dim = self.embed_dim // self.num_heads
|
34 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
35 |
+
raise ValueError(
|
36 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
37 |
+
f" {self.num_heads})."
|
38 |
+
)
|
39 |
+
self.scale = self.head_dim**-0.5
|
40 |
+
self.dropout = config.attention_dropout
|
41 |
+
|
42 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
43 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
44 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
45 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
46 |
+
|
47 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
48 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
49 |
+
|
50 |
+
def forward(
|
51 |
+
self,
|
52 |
+
hidden_states: torch.Tensor,
|
53 |
+
):
|
54 |
+
"""Input shape: Batch x Time x Channel"""
|
55 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
56 |
+
|
57 |
+
# get query proj
|
58 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
59 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
60 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
61 |
+
|
62 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
63 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
64 |
+
key_states = key_states.view(*proj_shape)
|
65 |
+
value_states = value_states.view(*proj_shape)
|
66 |
+
|
67 |
+
src_len = key_states.size(1)
|
68 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
69 |
+
|
70 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
71 |
+
raise ValueError(
|
72 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
73 |
+
f" {attn_weights.size()}"
|
74 |
+
)
|
75 |
+
|
76 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
77 |
+
|
78 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
79 |
+
|
80 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
81 |
+
|
82 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
83 |
+
raise ValueError(
|
84 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
85 |
+
f" {attn_output.size()}"
|
86 |
+
)
|
87 |
+
|
88 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
89 |
+
attn_output = attn_output.transpose(1, 2)
|
90 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
91 |
+
|
92 |
+
attn_output = self.out_proj(attn_output)
|
93 |
+
|
94 |
+
return attn_output
|
95 |
+
|
96 |
+
class CLIPMLP(nn.Module):
|
97 |
+
def __init__(self, config):
|
98 |
+
super().__init__()
|
99 |
+
self.config = config
|
100 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
101 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
102 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
103 |
+
|
104 |
+
def forward(self, hidden_states):
|
105 |
+
hidden_states = self.fc1(hidden_states)
|
106 |
+
hidden_states = self.activation_fn(hidden_states)
|
107 |
+
hidden_states = self.fc2(hidden_states)
|
108 |
+
return hidden_states
|
109 |
+
|
110 |
+
class CLIPEncoderMoELayer(nn.Module):
|
111 |
+
def __init__(self, config):
|
112 |
+
super().__init__()
|
113 |
+
self.embed_dim = config.hidden_size
|
114 |
+
self.self_attn = CLIPAttention(config)
|
115 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
116 |
+
self.num_of_experts = config.num_of_experts
|
117 |
+
self.num_selected = config.num_selected
|
118 |
+
self.gate = nn.Linear(self.embed_dim, self.num_of_experts, bias=False)
|
119 |
+
self.experts = nn.ModuleList([CLIPMLP(config) for _ in range(self.num_of_experts)])
|
120 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
121 |
+
|
122 |
+
def forward(
|
123 |
+
self,
|
124 |
+
hidden_states
|
125 |
+
):
|
126 |
+
residual = hidden_states
|
127 |
+
|
128 |
+
hidden_states = self.layer_norm1(hidden_states)
|
129 |
+
hidden_states = self.self_attn(hidden_states)
|
130 |
+
hidden_states = residual + hidden_states
|
131 |
+
|
132 |
+
residual = hidden_states
|
133 |
+
hidden_states = self.layer_norm2(hidden_states)
|
134 |
+
|
135 |
+
gate_logits = self.gate(hidden_states)
|
136 |
+
|
137 |
+
router_z_loss = torch.logsumexp(gate_logits, dim = -1)
|
138 |
+
router_z_loss = torch.square(router_z_loss)
|
139 |
+
router_z_loss = router_z_loss.mean()
|
140 |
+
|
141 |
+
gate_softmax = nn.functional.softmax(gate_logits, dim=-1, dtype=torch.float).to(hidden_states.dtype)
|
142 |
+
|
143 |
+
density_1_proxy = reduce(gate_softmax, '... n e -> ... e', 'mean')
|
144 |
+
|
145 |
+
weights, selected_experts = torch.topk(gate_softmax, self.num_selected)
|
146 |
+
|
147 |
+
one_hot_gate_indices = nn.functional.one_hot(rearrange(selected_experts, '... k -> k ...'), self.num_of_experts).float()[0]
|
148 |
+
density_1 = reduce(one_hot_gate_indices, '... n e -> ... e', 'mean')
|
149 |
+
balance_loss = (density_1_proxy * density_1).mean() * float(self.num_of_experts ** 2)
|
150 |
+
|
151 |
+
weights = weights / torch.sum(weights, dim=-1, keepdim=True).to(hidden_states.dtype)
|
152 |
+
|
153 |
+
results = torch.zeros_like(hidden_states).to(hidden_states.device, hidden_states.dtype)
|
154 |
+
for b in range(hidden_states.shape[0]):
|
155 |
+
for i, expert in enumerate(self.experts):
|
156 |
+
token_idx, nth_expert = torch.where(selected_experts[b] == i)
|
157 |
+
results[b][token_idx] += weights[b][token_idx, nth_expert, None] * expert(hidden_states[b][token_idx])
|
158 |
+
#hidden_states = self.mlp(hidden_states)
|
159 |
+
hidden_states = residual + results
|
160 |
+
|
161 |
+
outputs = (hidden_states, balance_loss, router_z_loss)
|
162 |
+
return outputs
|
163 |
+
|
164 |
+
class CLIPEncoder(nn.Module):
|
165 |
+
def __init__(self, config):
|
166 |
+
super().__init__()
|
167 |
+
self.config = config
|
168 |
+
self.layers = nn.ModuleList([CLIPEncoderMoELayer(config) for _ in range(config.num_hidden_layers)])
|
169 |
+
|
170 |
+
def forward(
|
171 |
+
self,
|
172 |
+
inputs_embeds
|
173 |
+
):
|
174 |
+
encoder_states = ()
|
175 |
+
hidden_states = inputs_embeds
|
176 |
+
balance_losses = []
|
177 |
+
router_z_losses = []
|
178 |
+
for idx, encoder_layer in enumerate(self.layers):
|
179 |
+
encoder_states = encoder_states + (hidden_states,)
|
180 |
+
layer_outputs = encoder_layer(hidden_states)
|
181 |
+
hidden_states = layer_outputs[0]
|
182 |
+
balance_loss = layer_outputs[1]
|
183 |
+
balance_losses.append(balance_loss)
|
184 |
+
router_z_loss = layer_outputs[2]
|
185 |
+
router_z_losses.append(router_z_loss)
|
186 |
+
return encoder_states, balance_losses, router_z_losses
|
187 |
+
|
188 |
+
class CLIPVisionEmbeddings(nn.Module):
|
189 |
+
def __init__(self, config):
|
190 |
+
super().__init__()
|
191 |
+
self.config = config
|
192 |
+
self.embed_dim = config.hidden_size
|
193 |
+
self.image_size = config.image_size
|
194 |
+
self.patch_size = config.patch_size
|
195 |
+
|
196 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
197 |
+
|
198 |
+
self.patch_embedding = nn.Conv2d(
|
199 |
+
in_channels=config.num_channels,
|
200 |
+
out_channels=self.embed_dim,
|
201 |
+
kernel_size=self.patch_size,
|
202 |
+
stride=self.patch_size,
|
203 |
+
bias=False,
|
204 |
+
)
|
205 |
+
|
206 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
207 |
+
self.num_positions = self.num_patches + 1
|
208 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
209 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
210 |
+
|
211 |
+
def forward(self, pixel_values):
|
212 |
+
batch_size = pixel_values.shape[0]
|
213 |
+
target_dtype = self.patch_embedding.weight.dtype
|
214 |
+
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
215 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
216 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
217 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
218 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
219 |
+
return embeddings
|
220 |
+
|
221 |
+
class CLIPSMoEVisionTransformer(nn.Module):
|
222 |
+
def __init__(self, config, num_experts=4, num_selected=2):
|
223 |
+
super().__init__()
|
224 |
+
self.config = config
|
225 |
+
embed_dim = config.hidden_size
|
226 |
+
config.num_of_experts = num_experts
|
227 |
+
config.num_selected = num_selected
|
228 |
+
self.embeddings = CLIPVisionEmbeddings(config)
|
229 |
+
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
230 |
+
self.encoder = CLIPEncoder(config)
|
231 |
+
#self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
232 |
+
|
233 |
+
def forward(self, pixel_values):
|
234 |
+
hidden_states = self.embeddings(pixel_values)
|
235 |
+
hidden_states = self.pre_layrnorm(hidden_states)
|
236 |
+
|
237 |
+
encoder_outputs, balance_losses, router_z_losses = self.encoder(hidden_states)
|
238 |
+
return encoder_outputs[-1], torch.stack(balance_losses).mean(), torch.stack(router_z_losses).mean()
|
cumo/model/multimodal_projector/builder.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
|
16 |
+
# Copyright 2024 Jiachen Li
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
import re
|
22 |
+
from typing import List, Optional
|
23 |
+
import torch.nn.functional as F
|
24 |
+
from einops import rearrange, repeat, reduce, pack, unpack
|
25 |
+
|
26 |
+
|
27 |
+
class IdentityMap(nn.Module):
|
28 |
+
def __init__(self):
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
def forward(self, x, *args, **kwargs):
|
32 |
+
return x
|
33 |
+
|
34 |
+
@property
|
35 |
+
def config(self):
|
36 |
+
return {"mm_projector_type": 'identity'}
|
37 |
+
|
38 |
+
class MLPMoE(nn.Module):
|
39 |
+
def __init__(self, num_experts, num_selected, mm_channels, channels, num_layers, dropout=False):
|
40 |
+
super().__init__()
|
41 |
+
self.num_experts = num_experts
|
42 |
+
self.num_selected = num_selected
|
43 |
+
self.mm_channels = mm_channels
|
44 |
+
self.channels = channels
|
45 |
+
|
46 |
+
self.gate = nn.Linear(mm_channels, num_experts, bias=False)
|
47 |
+
self.num_selected = num_selected
|
48 |
+
self.num_experts = num_experts
|
49 |
+
self.experts = nn.ModuleList([nn.Sequential(nn.Linear(mm_channels, channels), nn.GELU(), nn.Linear(channels, channels)) for _ in range(num_experts)])
|
50 |
+
|
51 |
+
def forward(self, x_img):
|
52 |
+
gate_logits = self.gate(x_img)
|
53 |
+
|
54 |
+
router_z_loss = torch.logsumexp(gate_logits, dim = -1)
|
55 |
+
router_z_loss = torch.square(router_z_loss)
|
56 |
+
router_z_loss = router_z_loss.mean()
|
57 |
+
|
58 |
+
gate_softmax = F.softmax(gate_logits, dim=-1, dtype=torch.float).to(x_img.dtype)
|
59 |
+
|
60 |
+
density_1_proxy = reduce(gate_softmax, '... n e -> ... e', 'mean')
|
61 |
+
|
62 |
+
weights, selected_experts = torch.topk(gate_softmax, self.num_selected)
|
63 |
+
|
64 |
+
one_hot_gate_indices = F.one_hot(rearrange(selected_experts, '... k -> k ...'), self.num_experts).float()[0]
|
65 |
+
density_1 = reduce(one_hot_gate_indices, '... n e -> ... e', 'mean')
|
66 |
+
balance_loss = (density_1_proxy * density_1).mean() * float(self.num_experts ** 2)
|
67 |
+
|
68 |
+
weights = weights / torch.sum(weights, dim=-1, keepdim=True).to(x_img.dtype)
|
69 |
+
|
70 |
+
results = torch.zeros((x_img.shape[0], x_img.shape[1], self.channels)).to(x_img.device, x_img.dtype)
|
71 |
+
|
72 |
+
for b in range(x_img.shape[0]):
|
73 |
+
for i, expert in enumerate(self.experts):
|
74 |
+
token_idx, nth_expert = torch.where(selected_experts[b] == i)
|
75 |
+
results[b][token_idx] += weights[b][token_idx, nth_expert, None] * expert(x_img[b][token_idx])
|
76 |
+
return results, balance_loss, router_z_loss
|
77 |
+
|
78 |
+
@property
|
79 |
+
def config(self):
|
80 |
+
return {"mm_projector_type": 'smoe_mlp'}
|
81 |
+
|
82 |
+
def build_vision_projector(config, delay_load=False, **kwargs):
|
83 |
+
projector_type = getattr(config, 'mm_projector_type', 'linear')
|
84 |
+
|
85 |
+
if projector_type == 'linear':
|
86 |
+
return nn.Linear(config.mm_hidden_size, config.hidden_size)
|
87 |
+
|
88 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
89 |
+
if mlp_gelu_match:
|
90 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
91 |
+
modules = [nn.Linear(config.mm_hidden_size * len(config.scales), config.hidden_size)]
|
92 |
+
for _ in range(1, mlp_depth):
|
93 |
+
modules.append(nn.GELU())
|
94 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
95 |
+
return nn.Sequential(*modules)
|
96 |
+
|
97 |
+
if projector_type == 'identity':
|
98 |
+
return IdentityMap()
|
99 |
+
|
100 |
+
elif projector_type == 'smoe_mlp':
|
101 |
+
return MLPMoE(num_experts=config.num_experts, num_selected=config.num_selected, mm_channels=(config.mm_hidden_size * len(config.scales)), channels=config.hidden_size, num_layers=config.num_layers, dropout=config.dropout)
|
102 |
+
|
103 |
+
|
104 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
cumo/model/utils.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig
|
2 |
+
|
3 |
+
|
4 |
+
def auto_upgrade(config):
|
5 |
+
cfg = AutoConfig.from_pretrained(config)
|
6 |
+
if 'llava' in config and 'llava' not in cfg.model_type:
|
7 |
+
assert cfg.model_type == 'llama'
|
8 |
+
print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.")
|
9 |
+
print("You must upgrade the checkpoint to the new code base (this can be done automatically).")
|
10 |
+
confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]")
|
11 |
+
if confirm.lower() in ["y", "yes"]:
|
12 |
+
print("Upgrading checkpoint...")
|
13 |
+
assert len(cfg.architectures) == 1
|
14 |
+
setattr(cfg.__class__, "model_type", "llava")
|
15 |
+
cfg.architectures[0] = 'LlavaLlamaForCausalLM'
|
16 |
+
cfg.save_pretrained(config)
|
17 |
+
print("Checkpoint upgraded.")
|
18 |
+
else:
|
19 |
+
print("Checkpoint upgrade aborted.")
|
20 |
+
exit(1)
|
cumo/train/llama_flash_attn_monkey_patch.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
|
16 |
+
# Copyright 2024 Jiachen Li
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
from typing import Optional, Tuple
|
20 |
+
import warnings
|
21 |
+
|
22 |
+
import torch
|
23 |
+
|
24 |
+
import transformers
|
25 |
+
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv
|
26 |
+
|
27 |
+
try:
|
28 |
+
from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
|
29 |
+
except ImportError:
|
30 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
|
31 |
+
from flash_attn.bert_padding import unpad_input, pad_input
|
32 |
+
|
33 |
+
|
34 |
+
def forward(
|
35 |
+
self,
|
36 |
+
hidden_states: torch.Tensor,
|
37 |
+
attention_mask: Optional[torch.Tensor] = None,
|
38 |
+
position_ids: Optional[torch.Tensor] = None,
|
39 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
40 |
+
output_attentions: bool = False,
|
41 |
+
use_cache: bool = False,
|
42 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
43 |
+
if output_attentions:
|
44 |
+
warnings.warn(
|
45 |
+
"Output attentions is not supported for patched `LlamaAttention`, returning `None` instead."
|
46 |
+
)
|
47 |
+
|
48 |
+
bsz, q_len, _ = hidden_states.size()
|
49 |
+
|
50 |
+
query_states = (
|
51 |
+
self.q_proj(hidden_states)
|
52 |
+
.view(bsz, q_len, self.num_heads, self.head_dim)
|
53 |
+
.transpose(1, 2)
|
54 |
+
)
|
55 |
+
key_states = (
|
56 |
+
self.k_proj(hidden_states)
|
57 |
+
.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
58 |
+
.transpose(1, 2)
|
59 |
+
)
|
60 |
+
value_states = (
|
61 |
+
self.v_proj(hidden_states)
|
62 |
+
.view(bsz, q_len, self.num_key_value_heads, self.head_dim)
|
63 |
+
.transpose(1, 2)
|
64 |
+
) # shape: (b, num_heads, s, head_dim)
|
65 |
+
|
66 |
+
kv_seq_len = key_states.shape[-2]
|
67 |
+
if past_key_value is not None:
|
68 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
69 |
+
|
70 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
71 |
+
query_states, key_states = apply_rotary_pos_emb(
|
72 |
+
query_states, key_states, cos, sin, position_ids
|
73 |
+
)
|
74 |
+
|
75 |
+
if past_key_value is not None:
|
76 |
+
# reuse k, v
|
77 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
78 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
79 |
+
|
80 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
81 |
+
|
82 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
83 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
84 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
85 |
+
|
86 |
+
# Transform the data into the format required by flash attention
|
87 |
+
qkv = torch.stack([query_states, key_states, value_states], dim=2)
|
88 |
+
qkv = qkv.transpose(1, 3) # shape: [b, s, 3, num_heads, head_dim]
|
89 |
+
key_padding_mask = attention_mask
|
90 |
+
|
91 |
+
if key_padding_mask is None:
|
92 |
+
qkv = qkv.reshape(-1, 3, self.num_heads, self.head_dim)
|
93 |
+
cu_q_lens = torch.arange(
|
94 |
+
0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device
|
95 |
+
)
|
96 |
+
max_s = q_len
|
97 |
+
output = flash_attn_unpadded_qkvpacked_func(
|
98 |
+
qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
|
99 |
+
)
|
100 |
+
output = output.view(bsz, q_len, -1)
|
101 |
+
else:
|
102 |
+
qkv = qkv.reshape(bsz, q_len, -1)
|
103 |
+
qkv, indices, cu_q_lens, max_s = unpad_input(qkv, key_padding_mask)
|
104 |
+
qkv = qkv.view(-1, 3, self.num_heads, self.head_dim)
|
105 |
+
output_unpad = flash_attn_unpadded_qkvpacked_func(
|
106 |
+
qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True
|
107 |
+
)
|
108 |
+
output_unpad = output_unpad.reshape(-1, self.num_heads * self.head_dim)
|
109 |
+
output = pad_input(output_unpad, indices, bsz, q_len)
|
110 |
+
|
111 |
+
return self.o_proj(output), None, past_key_value
|
112 |
+
|
113 |
+
|
114 |
+
# Disable the transformation of the attention mask in LlamaModel as the flash attention
|
115 |
+
# requires the attention mask to be the same as the key_padding_mask
|
116 |
+
def _prepare_decoder_attention_mask(
|
117 |
+
self, attention_mask, input_shape, inputs_embeds, past_key_values_length
|
118 |
+
):
|
119 |
+
# [bsz, seq_len]
|
120 |
+
return attention_mask
|
121 |
+
|
122 |
+
|
123 |
+
def replace_llama_attn_with_flash_attn():
|
124 |
+
cuda_major, cuda_minor = torch.cuda.get_device_capability()
|
125 |
+
if cuda_major < 8:
|
126 |
+
warnings.warn(
|
127 |
+
"Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward."
|
128 |
+
"ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593"
|
129 |
+
)
|
130 |
+
transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = (
|
131 |
+
_prepare_decoder_attention_mask
|
132 |
+
)
|
133 |
+
transformers.models.llama.modeling_llama.LlamaAttention.forward = forward
|
cumo/train/llama_xformers_attn_monkey_patch.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Directly copied the code from https://raw.githubusercontent.com/oobabooga/text-generation-webui/main/modules/llama_attn_hijack.py and made some adjustments
|
3 |
+
"""
|
4 |
+
|
5 |
+
import logging
|
6 |
+
import math
|
7 |
+
from typing import Optional, Tuple
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import transformers.models.llama.modeling_llama
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
try:
|
14 |
+
import xformers.ops
|
15 |
+
except ImportError:
|
16 |
+
logging.error("xformers not found! Please install it before trying to use it.")
|
17 |
+
|
18 |
+
|
19 |
+
def replace_llama_attn_with_xformers_attn():
|
20 |
+
transformers.models.llama.modeling_llama.LlamaAttention.forward = xformers_forward
|
21 |
+
|
22 |
+
|
23 |
+
def xformers_forward(
|
24 |
+
self,
|
25 |
+
hidden_states: torch.Tensor,
|
26 |
+
attention_mask: Optional[torch.Tensor] = None,
|
27 |
+
position_ids: Optional[torch.LongTensor] = None,
|
28 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
29 |
+
output_attentions: bool = False,
|
30 |
+
use_cache: bool = False,
|
31 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
32 |
+
# pylint: disable=duplicate-code
|
33 |
+
bsz, q_len, _ = hidden_states.size()
|
34 |
+
|
35 |
+
query_states = (
|
36 |
+
self.q_proj(hidden_states)
|
37 |
+
.view(bsz, q_len, self.num_heads, self.head_dim)
|
38 |
+
.transpose(1, 2)
|
39 |
+
)
|
40 |
+
key_states = (
|
41 |
+
self.k_proj(hidden_states)
|
42 |
+
.view(bsz, q_len, self.num_heads, self.head_dim)
|
43 |
+
.transpose(1, 2)
|
44 |
+
)
|
45 |
+
value_states = (
|
46 |
+
self.v_proj(hidden_states)
|
47 |
+
.view(bsz, q_len, self.num_heads, self.head_dim)
|
48 |
+
.transpose(1, 2)
|
49 |
+
)
|
50 |
+
|
51 |
+
kv_seq_len = key_states.shape[-2]
|
52 |
+
if past_key_value is not None:
|
53 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
54 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
55 |
+
(
|
56 |
+
query_states,
|
57 |
+
key_states,
|
58 |
+
) = transformers.models.llama.modeling_llama.apply_rotary_pos_emb(
|
59 |
+
query_states, key_states, cos, sin, position_ids
|
60 |
+
)
|
61 |
+
# [bsz, nh, t, hd]
|
62 |
+
|
63 |
+
if past_key_value is not None:
|
64 |
+
# reuse k, v, self_attention
|
65 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
66 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
67 |
+
|
68 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
69 |
+
|
70 |
+
# We only apply xformers optimizations if we don't need to output the whole attention matrix
|
71 |
+
if not output_attentions:
|
72 |
+
query_states = query_states.transpose(1, 2)
|
73 |
+
key_states = key_states.transpose(1, 2)
|
74 |
+
value_states = value_states.transpose(1, 2)
|
75 |
+
|
76 |
+
# This is a nasty hack. We know attention_mask in transformers is either LowerTriangular or all Zeros.
|
77 |
+
# We therefore check if one element in the upper triangular portion is zero. If it is, then the mask is all zeros.
|
78 |
+
if attention_mask is None or attention_mask[0, 0, 0, 1] == 0:
|
79 |
+
# input and output should be of form (bsz, q_len, num_heads, head_dim)
|
80 |
+
attn_output = xformers.ops.memory_efficient_attention(
|
81 |
+
query_states, key_states, value_states, attn_bias=None
|
82 |
+
)
|
83 |
+
else:
|
84 |
+
# input and output should be of form (bsz, q_len, num_heads, head_dim)
|
85 |
+
attn_output = xformers.ops.memory_efficient_attention(
|
86 |
+
query_states,
|
87 |
+
key_states,
|
88 |
+
value_states,
|
89 |
+
attn_bias=xformers.ops.LowerTriangularMask(),
|
90 |
+
)
|
91 |
+
attn_weights = None
|
92 |
+
else:
|
93 |
+
attn_weights = torch.matmul(
|
94 |
+
query_states, key_states.transpose(2, 3)
|
95 |
+
) / math.sqrt(self.head_dim)
|
96 |
+
|
97 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
98 |
+
raise ValueError(
|
99 |
+
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
100 |
+
f" {attn_weights.size()}"
|
101 |
+
)
|
102 |
+
|
103 |
+
if attention_mask is not None:
|
104 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
105 |
+
raise ValueError(
|
106 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
107 |
+
)
|
108 |
+
attn_weights = attn_weights + attention_mask
|
109 |
+
attn_weights = torch.max(
|
110 |
+
attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)
|
111 |
+
)
|
112 |
+
|
113 |
+
# upcast attention to fp32
|
114 |
+
attn_weights = nn.functional.softmax(
|
115 |
+
attn_weights, dim=-1, dtype=torch.float32
|
116 |
+
).to(query_states.dtype)
|
117 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
118 |
+
|
119 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
120 |
+
raise ValueError(
|
121 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
122 |
+
f" {attn_output.size()}"
|
123 |
+
)
|
124 |
+
|
125 |
+
attn_output = attn_output.transpose(1, 2)
|
126 |
+
|
127 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
128 |
+
attn_output = self.o_proj(attn_output)
|
129 |
+
return attn_output, attn_weights, past_key_value
|
cumo/train/llava_trainer.py
ADDED
@@ -0,0 +1,273 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
|
16 |
+
# Copyright 2024 Jiachen Li
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
import os
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
|
23 |
+
from torch.utils.data import Sampler
|
24 |
+
|
25 |
+
from transformers import Trainer
|
26 |
+
from transformers.trainer import (
|
27 |
+
is_sagemaker_mp_enabled,
|
28 |
+
get_parameter_names,
|
29 |
+
has_length,
|
30 |
+
ALL_LAYERNORM_LAYERS,
|
31 |
+
logger,
|
32 |
+
)
|
33 |
+
from typing import List, Optional
|
34 |
+
|
35 |
+
|
36 |
+
def maybe_zero_3(param, ignore_status=False, name=None):
|
37 |
+
from deepspeed import zero
|
38 |
+
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
|
39 |
+
if hasattr(param, "ds_id"):
|
40 |
+
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
|
41 |
+
if not ignore_status:
|
42 |
+
print(name, 'no ignore status')
|
43 |
+
with zero.GatheredParameters([param]):
|
44 |
+
param = param.data.detach().cpu().clone()
|
45 |
+
else:
|
46 |
+
param = param.detach().cpu().clone()
|
47 |
+
return param
|
48 |
+
|
49 |
+
|
50 |
+
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
|
51 |
+
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
|
52 |
+
to_return = {k: maybe_zero_3(v, ignore_status=True, name=k).cpu() for k, v in to_return.items()}
|
53 |
+
return to_return
|
54 |
+
|
55 |
+
|
56 |
+
def split_to_even_chunks(indices, lengths, num_chunks):
|
57 |
+
"""
|
58 |
+
Split a list of indices into `chunks` chunks of roughly equal lengths.
|
59 |
+
"""
|
60 |
+
|
61 |
+
if len(indices) % num_chunks != 0:
|
62 |
+
return [indices[i::num_chunks] for i in range(num_chunks)]
|
63 |
+
|
64 |
+
num_indices_per_chunk = len(indices) // num_chunks
|
65 |
+
|
66 |
+
chunks = [[] for _ in range(num_chunks)]
|
67 |
+
chunks_lengths = [0 for _ in range(num_chunks)]
|
68 |
+
for index in indices:
|
69 |
+
shortest_chunk = chunks_lengths.index(min(chunks_lengths))
|
70 |
+
chunks[shortest_chunk].append(index)
|
71 |
+
chunks_lengths[shortest_chunk] += lengths[index]
|
72 |
+
if len(chunks[shortest_chunk]) == num_indices_per_chunk:
|
73 |
+
chunks_lengths[shortest_chunk] = float("inf")
|
74 |
+
|
75 |
+
return chunks
|
76 |
+
|
77 |
+
|
78 |
+
def get_modality_length_grouped_indices(lengths, batch_size, world_size, generator=None):
|
79 |
+
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
|
80 |
+
assert all(l != 0 for l in lengths), "Should not have zero length."
|
81 |
+
if all(l > 0 for l in lengths) or all(l < 0 for l in lengths):
|
82 |
+
# all samples are in the same modality
|
83 |
+
return get_length_grouped_indices(lengths, batch_size, world_size, generator=generator)
|
84 |
+
mm_indices, mm_lengths = zip(*[(i, l) for i, l in enumerate(lengths) if l > 0])
|
85 |
+
lang_indices, lang_lengths = zip(*[(i, -l) for i, l in enumerate(lengths) if l < 0])
|
86 |
+
|
87 |
+
mm_shuffle = [mm_indices[i] for i in get_length_grouped_indices(mm_lengths, batch_size, world_size, generator=None)]
|
88 |
+
lang_shuffle = [lang_indices[i] for i in get_length_grouped_indices(lang_lengths, batch_size, world_size, generator=None)]
|
89 |
+
megabatch_size = world_size * batch_size
|
90 |
+
mm_megabatches = [mm_shuffle[i : i + megabatch_size] for i in range(0, len(mm_shuffle), megabatch_size)]
|
91 |
+
lang_megabatches = [lang_shuffle[i : i + megabatch_size] for i in range(0, len(lang_shuffle), megabatch_size)]
|
92 |
+
|
93 |
+
last_mm = mm_megabatches[-1]
|
94 |
+
last_lang = lang_megabatches[-1]
|
95 |
+
additional_batch = last_mm + last_lang
|
96 |
+
megabatches = mm_megabatches[:-1] + lang_megabatches[:-1]
|
97 |
+
megabatch_indices = torch.randperm(len(megabatches), generator=generator)
|
98 |
+
megabatches = [megabatches[i] for i in megabatch_indices]
|
99 |
+
|
100 |
+
if len(additional_batch) > 0:
|
101 |
+
megabatches.append(sorted(additional_batch))
|
102 |
+
|
103 |
+
return [i for megabatch in megabatches for i in megabatch]
|
104 |
+
|
105 |
+
|
106 |
+
def get_length_grouped_indices(lengths, batch_size, world_size, generator=None, merge=True):
|
107 |
+
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
|
108 |
+
indices = torch.randperm(len(lengths), generator=generator)
|
109 |
+
megabatch_size = world_size * batch_size
|
110 |
+
megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)]
|
111 |
+
megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches]
|
112 |
+
megabatches = [split_to_even_chunks(megabatch, lengths, world_size) for megabatch in megabatches]
|
113 |
+
|
114 |
+
return [i for megabatch in megabatches for batch in megabatch for i in batch]
|
115 |
+
|
116 |
+
|
117 |
+
class LengthGroupedSampler(Sampler):
|
118 |
+
r"""
|
119 |
+
Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while
|
120 |
+
keeping a bit of randomness.
|
121 |
+
"""
|
122 |
+
|
123 |
+
def __init__(
|
124 |
+
self,
|
125 |
+
batch_size: int,
|
126 |
+
world_size: int,
|
127 |
+
lengths: Optional[List[int]] = None,
|
128 |
+
generator=None,
|
129 |
+
group_by_modality: bool = False,
|
130 |
+
):
|
131 |
+
if lengths is None:
|
132 |
+
raise ValueError("Lengths must be provided.")
|
133 |
+
|
134 |
+
self.batch_size = batch_size
|
135 |
+
self.world_size = world_size
|
136 |
+
self.lengths = lengths
|
137 |
+
self.generator = generator
|
138 |
+
self.group_by_modality = group_by_modality
|
139 |
+
|
140 |
+
def __len__(self):
|
141 |
+
return len(self.lengths)
|
142 |
+
|
143 |
+
def __iter__(self):
|
144 |
+
if self.group_by_modality:
|
145 |
+
indices = get_modality_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator)
|
146 |
+
else:
|
147 |
+
indices = get_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator)
|
148 |
+
return iter(indices)
|
149 |
+
|
150 |
+
|
151 |
+
class LLaVATrainer(Trainer):
|
152 |
+
|
153 |
+
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
|
154 |
+
if self.train_dataset is None or not has_length(self.train_dataset):
|
155 |
+
return None
|
156 |
+
|
157 |
+
if self.args.group_by_modality_length:
|
158 |
+
lengths = self.train_dataset.modality_lengths
|
159 |
+
return LengthGroupedSampler(
|
160 |
+
self.args.train_batch_size,
|
161 |
+
world_size=self.args.world_size * self.args.gradient_accumulation_steps,
|
162 |
+
lengths=lengths,
|
163 |
+
group_by_modality=True,
|
164 |
+
)
|
165 |
+
else:
|
166 |
+
return super()._get_train_sampler()
|
167 |
+
|
168 |
+
def create_optimizer(self):
|
169 |
+
"""
|
170 |
+
Setup the optimizer.
|
171 |
+
|
172 |
+
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
|
173 |
+
Trainer's init through `optimizers`, or subclass and override this method in a subclass.
|
174 |
+
"""
|
175 |
+
if is_sagemaker_mp_enabled():
|
176 |
+
return super().create_optimizer()
|
177 |
+
|
178 |
+
opt_model = self.model
|
179 |
+
|
180 |
+
if self.optimizer is None:
|
181 |
+
decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
|
182 |
+
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
183 |
+
if self.args.mm_projector_lr is not None:
|
184 |
+
projector_parameters = [name for name, _ in opt_model.named_parameters() if "mm_projector" in name]
|
185 |
+
optimizer_grouped_parameters = [
|
186 |
+
{
|
187 |
+
"params": [
|
188 |
+
p for n, p in opt_model.named_parameters() if (n in decay_parameters and n not in projector_parameters and p.requires_grad)
|
189 |
+
],
|
190 |
+
"weight_decay": self.args.weight_decay,
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"params": [
|
194 |
+
p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n not in projector_parameters and p.requires_grad)
|
195 |
+
],
|
196 |
+
"weight_decay": 0.0,
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"params": [
|
200 |
+
p for n, p in opt_model.named_parameters() if (n in decay_parameters and n in projector_parameters and p.requires_grad)
|
201 |
+
],
|
202 |
+
"weight_decay": self.args.weight_decay,
|
203 |
+
"lr": self.args.mm_projector_lr,
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"params": [
|
207 |
+
p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n in projector_parameters and p.requires_grad)
|
208 |
+
],
|
209 |
+
"weight_decay": 0.0,
|
210 |
+
"lr": self.args.mm_projector_lr,
|
211 |
+
},
|
212 |
+
]
|
213 |
+
else:
|
214 |
+
optimizer_grouped_parameters = [
|
215 |
+
{
|
216 |
+
"params": [
|
217 |
+
p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad)
|
218 |
+
],
|
219 |
+
"weight_decay": self.args.weight_decay,
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"params": [
|
223 |
+
p for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad)
|
224 |
+
],
|
225 |
+
"weight_decay": 0.0,
|
226 |
+
},
|
227 |
+
]
|
228 |
+
|
229 |
+
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args)
|
230 |
+
|
231 |
+
self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
|
232 |
+
if optimizer_cls.__name__ == "Adam8bit":
|
233 |
+
import bitsandbytes
|
234 |
+
|
235 |
+
manager = bitsandbytes.optim.GlobalOptimManager.get_instance()
|
236 |
+
|
237 |
+
skipped = 0
|
238 |
+
for module in opt_model.modules():
|
239 |
+
if isinstance(module, nn.Embedding):
|
240 |
+
skipped += sum({p.data_ptr(): p.numel() for p in module.parameters()}.values())
|
241 |
+
logger.info(f"skipped {module}: {skipped/2**20}M params")
|
242 |
+
manager.register_module_override(module, "weight", {"optim_bits": 32})
|
243 |
+
logger.debug(f"bitsandbytes: will optimize {module} in fp32")
|
244 |
+
logger.info(f"skipped: {skipped/2**20}M params")
|
245 |
+
|
246 |
+
return self.optimizer
|
247 |
+
|
248 |
+
def _save_checkpoint(self, model, trial, metrics=None):
|
249 |
+
if getattr(self.args, 'tune_mm_mlp_adapter', False):
|
250 |
+
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
|
251 |
+
checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"
|
252 |
+
|
253 |
+
run_dir = self._get_output_dir(trial=trial)
|
254 |
+
output_dir = os.path.join(run_dir, checkpoint_folder)
|
255 |
+
|
256 |
+
# Only save Adapter
|
257 |
+
keys_to_match = ['mm_projector', 'vision_resampler']
|
258 |
+
if getattr(self.args, "use_im_start_end", False):
|
259 |
+
keys_to_match.extend(['embed_tokens', 'embed_in'])
|
260 |
+
|
261 |
+
weight_to_save = get_mm_adapter_state_maybe_zero_3(self.model.named_parameters(), keys_to_match)
|
262 |
+
|
263 |
+
if self.args.local_rank == 0 or self.args.local_rank == -1:
|
264 |
+
self.model.config.save_pretrained(output_dir)
|
265 |
+
torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin'))
|
266 |
+
else:
|
267 |
+
super(LLaVATrainer, self)._save_checkpoint(model, trial, metrics)
|
268 |
+
|
269 |
+
def _save(self, output_dir: Optional[str] = None, state_dict=None):
|
270 |
+
if getattr(self.args, 'tune_mm_mlp_adapter', False):
|
271 |
+
pass
|
272 |
+
else:
|
273 |
+
super(LLaVATrainer, self)._save(output_dir, state_dict)
|
cumo/train/train.py
ADDED
@@ -0,0 +1,1086 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
|
2 |
+
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
|
3 |
+
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
# Copyright 2023 Haotian Liu
|
17 |
+
#
|
18 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
19 |
+
# you may not use this file except in compliance with the License.
|
20 |
+
# You may obtain a copy of the License at
|
21 |
+
#
|
22 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
23 |
+
#
|
24 |
+
# Unless required by applicable law or agreed to in writing, software
|
25 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
26 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
27 |
+
# See the License for the specific language governing permissions and
|
28 |
+
# limitations under the License.
|
29 |
+
# ------------------------------------------------------------------------
|
30 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
|
31 |
+
# Copyright 2024 Jiachen Li
|
32 |
+
# ------------------------------------------------------------------------
|
33 |
+
|
34 |
+
import os
|
35 |
+
import copy
|
36 |
+
from dataclasses import dataclass, field
|
37 |
+
import json
|
38 |
+
import logging
|
39 |
+
import pathlib
|
40 |
+
from typing import Dict, Optional, Sequence, List
|
41 |
+
|
42 |
+
import torch
|
43 |
+
|
44 |
+
import transformers
|
45 |
+
import tokenizers
|
46 |
+
|
47 |
+
from cumo.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
48 |
+
from torch.utils.data import Dataset
|
49 |
+
from cumo.train.llava_trainer import LLaVATrainer
|
50 |
+
|
51 |
+
from cumo import conversation as conversation_lib
|
52 |
+
from cumo.model import *
|
53 |
+
from cumo.mm_utils import tokenizer_image_token
|
54 |
+
|
55 |
+
from PIL import Image
|
56 |
+
|
57 |
+
local_rank = None
|
58 |
+
|
59 |
+
|
60 |
+
def rank0_print(*args):
|
61 |
+
if local_rank == 0:
|
62 |
+
print(*args)
|
63 |
+
|
64 |
+
|
65 |
+
from packaging import version
|
66 |
+
IS_TOKENIZER_GREATER_THAN_0_14 = version.parse(tokenizers.__version__) >= version.parse('0.14')
|
67 |
+
|
68 |
+
|
69 |
+
@dataclass
|
70 |
+
class ModelArguments:
|
71 |
+
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
|
72 |
+
version: Optional[str] = field(default="v0")
|
73 |
+
freeze_backbone: bool = field(default=False)
|
74 |
+
tune_mm_mlp_adapter: bool = field(default=False)
|
75 |
+
vision_tower: Optional[str] = field(default=None)
|
76 |
+
vision_tower_dir: Optional[str] = field(default=None)
|
77 |
+
mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer
|
78 |
+
num_experts: Optional[int] = field(default=1)
|
79 |
+
num_selected: Optional[int] = field(default=1)
|
80 |
+
num_layers: Optional[int] = field(default=3)
|
81 |
+
balance_loss_coef: Optional[float] = field(default=0.0)
|
82 |
+
router_z_loss_coef: Optional[float] = field(default=0.0)
|
83 |
+
dropout: Optional[bool] = field(default=False)
|
84 |
+
mlp_smoe: Optional[bool] = field(default=False)
|
85 |
+
clip_smoe: Optional[bool] = field(default=False)
|
86 |
+
scales: Optional[str] = field(default=None)
|
87 |
+
pretrain_mm_mlp_adapter: Optional[str] = field(default=None)
|
88 |
+
mm_projector_type: Optional[str] = field(default='linear')
|
89 |
+
mm_use_im_start_end: bool = field(default=False)
|
90 |
+
mm_use_im_patch_token: bool = field(default=True)
|
91 |
+
mm_patch_merge_type: Optional[str] = field(default='flat')
|
92 |
+
mm_vision_select_feature: Optional[str] = field(default="patch")
|
93 |
+
|
94 |
+
|
95 |
+
@dataclass
|
96 |
+
class DataArguments:
|
97 |
+
data_path: str = field(default=None,
|
98 |
+
metadata={"help": "Path to the training data."})
|
99 |
+
lazy_preprocess: bool = False
|
100 |
+
is_multimodal: bool = False
|
101 |
+
image_folder: Optional[str] = field(default=None)
|
102 |
+
image_aspect_ratio: str = 'square'
|
103 |
+
|
104 |
+
|
105 |
+
@dataclass
|
106 |
+
class TrainingArguments(transformers.TrainingArguments):
|
107 |
+
cache_dir: Optional[str] = field(default=None)
|
108 |
+
optim: str = field(default="adamw_torch")
|
109 |
+
remove_unused_columns: bool = field(default=False)
|
110 |
+
freeze_mm_mlp_adapter: bool = field(default=False)
|
111 |
+
pft: bool = field(default=False)
|
112 |
+
mpt_attn_impl: Optional[str] = field(default="triton")
|
113 |
+
model_max_length: int = field(
|
114 |
+
default=512,
|
115 |
+
metadata={
|
116 |
+
"help":
|
117 |
+
"Maximum sequence length. Sequences will be right padded (and possibly truncated)."
|
118 |
+
},
|
119 |
+
)
|
120 |
+
double_quant: bool = field(
|
121 |
+
default=True,
|
122 |
+
metadata={"help": "Compress the quantization statistics through double quantization."}
|
123 |
+
)
|
124 |
+
quant_type: str = field(
|
125 |
+
default="nf4",
|
126 |
+
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
|
127 |
+
)
|
128 |
+
bits: int = field(
|
129 |
+
default=16,
|
130 |
+
metadata={"help": "How many bits to use."}
|
131 |
+
)
|
132 |
+
lora_enable: bool = False
|
133 |
+
lora_r: int = 64
|
134 |
+
lora_alpha: int = 16
|
135 |
+
lora_dropout: float = 0.05
|
136 |
+
lora_weight_path: str = ""
|
137 |
+
lora_bias: str = "none"
|
138 |
+
mm_projector_lr: Optional[float] = None
|
139 |
+
group_by_modality_length: bool = field(default=False)
|
140 |
+
|
141 |
+
|
142 |
+
def maybe_zero_3(param, ignore_status=False, name=None):
|
143 |
+
from deepspeed import zero
|
144 |
+
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
|
145 |
+
if hasattr(param, "ds_id"):
|
146 |
+
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
|
147 |
+
if not ignore_status:
|
148 |
+
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}")
|
149 |
+
with zero.GatheredParameters([param]):
|
150 |
+
param = param.data.detach().cpu().clone()
|
151 |
+
else:
|
152 |
+
param = param.detach().cpu().clone()
|
153 |
+
return param
|
154 |
+
|
155 |
+
|
156 |
+
# Borrowed from peft.utils.get_peft_model_state_dict
|
157 |
+
def get_peft_state_maybe_zero_3(named_params, bias):
|
158 |
+
if bias == "none":
|
159 |
+
to_return = {k: t for k, t in named_params if "lora_" in k}
|
160 |
+
elif bias == "all":
|
161 |
+
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
|
162 |
+
elif bias == "lora_only":
|
163 |
+
to_return = {}
|
164 |
+
maybe_lora_bias = {}
|
165 |
+
lora_bias_names = set()
|
166 |
+
for k, t in named_params:
|
167 |
+
if "lora_" in k:
|
168 |
+
to_return[k] = t
|
169 |
+
bias_name = k.split("lora_")[0] + "bias"
|
170 |
+
lora_bias_names.add(bias_name)
|
171 |
+
elif "bias" in k:
|
172 |
+
maybe_lora_bias[k] = t
|
173 |
+
for k, t in maybe_lora_bias:
|
174 |
+
if bias_name in lora_bias_names:
|
175 |
+
to_return[bias_name] = t
|
176 |
+
else:
|
177 |
+
raise NotImplementedError
|
178 |
+
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
|
179 |
+
return to_return
|
180 |
+
|
181 |
+
|
182 |
+
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
|
183 |
+
to_return = {k: t for k, t in named_params if "lora_" not in k}
|
184 |
+
if require_grad_only:
|
185 |
+
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
|
186 |
+
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
|
187 |
+
return to_return
|
188 |
+
|
189 |
+
|
190 |
+
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
|
191 |
+
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
|
192 |
+
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
|
193 |
+
return to_return
|
194 |
+
|
195 |
+
|
196 |
+
def find_all_linear_names(model):
|
197 |
+
cls = torch.nn.Linear
|
198 |
+
lora_module_names = set()
|
199 |
+
multimodal_keywords = ['mm_projector', 'vision_tower', 'vision_resampler']
|
200 |
+
for name, module in model.named_modules():
|
201 |
+
if any(mm_keyword in name for mm_keyword in multimodal_keywords):
|
202 |
+
continue
|
203 |
+
if isinstance(module, cls):
|
204 |
+
names = name.split('.')
|
205 |
+
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
|
206 |
+
|
207 |
+
if 'lm_head' in lora_module_names: # needed for 16-bit
|
208 |
+
lora_module_names.remove('lm_head')
|
209 |
+
return list(lora_module_names)
|
210 |
+
|
211 |
+
def safe_save_model_for_hf_trainer_pft(trainer: transformers.Trainer, output_dir: str):
|
212 |
+
"""Collects the state dict and dump to disk."""
|
213 |
+
keys_to_match = ['mm_projector', 'vision_tower']
|
214 |
+
if getattr(trainer.args, "use_im_start_end", False):
|
215 |
+
keys_to_match.extend(['embed_tokens', 'embed_in'])
|
216 |
+
|
217 |
+
weight_to_save_proj = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), ['mm_projector'])
|
218 |
+
weight_to_save_vision = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), ['vision_tower'])
|
219 |
+
weight_to_save_vision_new = {}
|
220 |
+
for k, v in weight_to_save_vision.items():
|
221 |
+
new_key = k.replace('model.vision_tower.', '')
|
222 |
+
weight_to_save_vision_new[new_key] = v
|
223 |
+
#trainer.model.config.save_pretrained(output_dir)
|
224 |
+
|
225 |
+
if trainer.args.local_rank == 0:
|
226 |
+
torch.save(weight_to_save_proj, os.path.join(output_dir, f'mm_projector.bin'))
|
227 |
+
torch.save(weight_to_save_vision_new, os.path.join(output_dir, f'clip.bin'))
|
228 |
+
|
229 |
+
if trainer.deepspeed:
|
230 |
+
torch.cuda.synchronize()
|
231 |
+
trainer.save_model(output_dir)
|
232 |
+
return
|
233 |
+
|
234 |
+
state_dict = trainer.model.state_dict()
|
235 |
+
if trainer.args.should_save:
|
236 |
+
cpu_state_dict = {
|
237 |
+
key: value.cpu()
|
238 |
+
for key, value in state_dict.items() if not any(key_match in key for key_match in keys_to_match)
|
239 |
+
}
|
240 |
+
del state_dict
|
241 |
+
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
|
242 |
+
|
243 |
+
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer,
|
244 |
+
output_dir: str):
|
245 |
+
"""Collects the state dict and dump to disk."""
|
246 |
+
if getattr(trainer.args, "tune_mm_mlp_adapter", False):
|
247 |
+
# Only save Adapter
|
248 |
+
keys_to_match = ['mm_projector']
|
249 |
+
if getattr(trainer.args, "use_im_start_end", False):
|
250 |
+
keys_to_match.extend(['embed_tokens', 'embed_in'])
|
251 |
+
|
252 |
+
weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match)
|
253 |
+
trainer.model.config.save_pretrained(output_dir)
|
254 |
+
|
255 |
+
current_folder = output_dir.split('/')[-1]
|
256 |
+
parent_folder = os.path.dirname(output_dir)
|
257 |
+
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
|
258 |
+
if current_folder.startswith('checkpoint-'):
|
259 |
+
mm_projector_folder = os.path.join(parent_folder, "mm_projector")
|
260 |
+
os.makedirs(mm_projector_folder, exist_ok=True)
|
261 |
+
torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin'))
|
262 |
+
else:
|
263 |
+
torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin'))
|
264 |
+
return
|
265 |
+
|
266 |
+
if trainer.deepspeed:
|
267 |
+
torch.cuda.synchronize()
|
268 |
+
trainer.save_model(output_dir)
|
269 |
+
return
|
270 |
+
|
271 |
+
state_dict = trainer.model.state_dict()
|
272 |
+
if trainer.args.should_save:
|
273 |
+
cpu_state_dict = {
|
274 |
+
key: value.cpu()
|
275 |
+
for key, value in state_dict.items()
|
276 |
+
}
|
277 |
+
del state_dict
|
278 |
+
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
|
279 |
+
|
280 |
+
|
281 |
+
def smart_tokenizer_and_embedding_resize(
|
282 |
+
special_tokens_dict: Dict,
|
283 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
284 |
+
model: transformers.PreTrainedModel,
|
285 |
+
):
|
286 |
+
"""Resize tokenizer and embedding.
|
287 |
+
|
288 |
+
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
|
289 |
+
"""
|
290 |
+
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
|
291 |
+
model.resize_token_embeddings(len(tokenizer))
|
292 |
+
|
293 |
+
if num_new_tokens > 0:
|
294 |
+
input_embeddings = model.get_input_embeddings().weight.data
|
295 |
+
output_embeddings = model.get_output_embeddings().weight.data
|
296 |
+
|
297 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
298 |
+
dim=0, keepdim=True)
|
299 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
300 |
+
dim=0, keepdim=True)
|
301 |
+
|
302 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
303 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
304 |
+
|
305 |
+
|
306 |
+
def _tokenize_fn(strings: Sequence[str],
|
307 |
+
tokenizer: transformers.PreTrainedTokenizer) -> Dict:
|
308 |
+
"""Tokenize a list of strings."""
|
309 |
+
tokenized_list = [
|
310 |
+
tokenizer(
|
311 |
+
text,
|
312 |
+
return_tensors="pt",
|
313 |
+
padding="longest",
|
314 |
+
max_length=tokenizer.model_max_length,
|
315 |
+
truncation=True,
|
316 |
+
) for text in strings
|
317 |
+
]
|
318 |
+
input_ids = labels = [
|
319 |
+
tokenized.input_ids[0] for tokenized in tokenized_list
|
320 |
+
]
|
321 |
+
input_ids_lens = labels_lens = [
|
322 |
+
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
|
323 |
+
for tokenized in tokenized_list
|
324 |
+
]
|
325 |
+
return dict(
|
326 |
+
input_ids=input_ids,
|
327 |
+
labels=labels,
|
328 |
+
input_ids_lens=input_ids_lens,
|
329 |
+
labels_lens=labels_lens,
|
330 |
+
)
|
331 |
+
|
332 |
+
|
333 |
+
def _mask_targets(target, tokenized_lens, speakers):
|
334 |
+
# cur_idx = 0
|
335 |
+
cur_idx = tokenized_lens[0]
|
336 |
+
tokenized_lens = tokenized_lens[1:]
|
337 |
+
target[:cur_idx] = IGNORE_INDEX
|
338 |
+
for tokenized_len, speaker in zip(tokenized_lens, speakers):
|
339 |
+
if speaker == "human":
|
340 |
+
target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX
|
341 |
+
cur_idx += tokenized_len
|
342 |
+
|
343 |
+
|
344 |
+
def _add_speaker_and_signal(header, source, get_conversation=True):
|
345 |
+
"""Add speaker and start/end signal on each round."""
|
346 |
+
BEGIN_SIGNAL = "### "
|
347 |
+
END_SIGNAL = "\n"
|
348 |
+
conversation = header
|
349 |
+
for sentence in source:
|
350 |
+
from_str = sentence["from"]
|
351 |
+
if from_str.lower() == "human":
|
352 |
+
from_str = conversation_lib.default_conversation.roles[0]
|
353 |
+
elif from_str.lower() == "gpt":
|
354 |
+
from_str = conversation_lib.default_conversation.roles[1]
|
355 |
+
else:
|
356 |
+
from_str = 'unknown'
|
357 |
+
sentence["value"] = (BEGIN_SIGNAL + from_str + ": " +
|
358 |
+
sentence["value"] + END_SIGNAL)
|
359 |
+
if get_conversation:
|
360 |
+
conversation += sentence["value"]
|
361 |
+
conversation += BEGIN_SIGNAL
|
362 |
+
return conversation
|
363 |
+
|
364 |
+
|
365 |
+
def preprocess_multimodal(
|
366 |
+
sources: Sequence[str],
|
367 |
+
data_args: DataArguments
|
368 |
+
) -> Dict:
|
369 |
+
is_multimodal = data_args.is_multimodal
|
370 |
+
if not is_multimodal:
|
371 |
+
return sources
|
372 |
+
|
373 |
+
for source in sources:
|
374 |
+
for sentence in source:
|
375 |
+
if DEFAULT_IMAGE_TOKEN in sentence['value']:
|
376 |
+
sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip()
|
377 |
+
sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value']
|
378 |
+
sentence['value'] = sentence['value'].strip()
|
379 |
+
if "mmtag" in conversation_lib.default_conversation.version:
|
380 |
+
sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '<Image>' + DEFAULT_IMAGE_TOKEN + '</Image>')
|
381 |
+
replace_token = DEFAULT_IMAGE_TOKEN
|
382 |
+
if data_args.mm_use_im_start_end:
|
383 |
+
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
|
384 |
+
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
385 |
+
|
386 |
+
return sources
|
387 |
+
|
388 |
+
def preprocess_llama_2(
|
389 |
+
sources,
|
390 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
391 |
+
has_image: bool = False
|
392 |
+
) -> Dict:
|
393 |
+
conv = conversation_lib.default_conversation.copy()
|
394 |
+
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
395 |
+
|
396 |
+
# Apply prompt templates
|
397 |
+
conversations = []
|
398 |
+
for i, source in enumerate(sources):
|
399 |
+
if roles[source[0]["from"]] != conv.roles[0]:
|
400 |
+
# Skip the first one if it is not from human
|
401 |
+
source = source[1:]
|
402 |
+
|
403 |
+
conv.messages = []
|
404 |
+
for j, sentence in enumerate(source):
|
405 |
+
role = roles[sentence["from"]]
|
406 |
+
assert role == conv.roles[j % 2], f"{i}"
|
407 |
+
conv.append_message(role, sentence["value"])
|
408 |
+
conversations.append(conv.get_prompt())
|
409 |
+
|
410 |
+
# Tokenize conversations
|
411 |
+
|
412 |
+
if has_image:
|
413 |
+
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
|
414 |
+
else:
|
415 |
+
input_ids = tokenizer(
|
416 |
+
conversations,
|
417 |
+
return_tensors="pt",
|
418 |
+
padding="longest",
|
419 |
+
max_length=tokenizer.model_max_length,
|
420 |
+
truncation=True,
|
421 |
+
).input_ids
|
422 |
+
|
423 |
+
targets = input_ids.clone()
|
424 |
+
|
425 |
+
assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2
|
426 |
+
# Mask targets
|
427 |
+
#print(conversations)
|
428 |
+
sep = "[/INST] "
|
429 |
+
for conversation, target in zip(conversations, targets):
|
430 |
+
total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
431 |
+
|
432 |
+
rounds = conversation.split(conv.sep2)
|
433 |
+
cur_len = 1
|
434 |
+
target[:cur_len] = IGNORE_INDEX
|
435 |
+
for i, rou in enumerate(rounds):
|
436 |
+
if rou == "":
|
437 |
+
break
|
438 |
+
|
439 |
+
parts = rou.split(sep)
|
440 |
+
if len(parts) != 2:
|
441 |
+
break
|
442 |
+
parts[0] += sep
|
443 |
+
|
444 |
+
if has_image:
|
445 |
+
round_len = len(tokenizer_image_token(rou, tokenizer))
|
446 |
+
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
|
447 |
+
else:
|
448 |
+
round_len = len(tokenizer(rou).input_ids)
|
449 |
+
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
|
450 |
+
|
451 |
+
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
|
452 |
+
|
453 |
+
cur_len += round_len
|
454 |
+
target[cur_len:] = IGNORE_INDEX
|
455 |
+
|
456 |
+
if cur_len < tokenizer.model_max_length:
|
457 |
+
if cur_len != total_len:
|
458 |
+
target[:] = IGNORE_INDEX
|
459 |
+
print(
|
460 |
+
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
|
461 |
+
f" (ignored)"
|
462 |
+
)
|
463 |
+
|
464 |
+
return dict(
|
465 |
+
input_ids=input_ids,
|
466 |
+
labels=targets,
|
467 |
+
)
|
468 |
+
|
469 |
+
|
470 |
+
def preprocess_v1(
|
471 |
+
sources,
|
472 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
473 |
+
has_image: bool = False
|
474 |
+
) -> Dict:
|
475 |
+
conv = conversation_lib.default_conversation.copy()
|
476 |
+
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
477 |
+
# Apply prompt templates
|
478 |
+
conversations = []
|
479 |
+
for i, source in enumerate(sources):
|
480 |
+
if roles[source[0]["from"]] != conv.roles[0]:
|
481 |
+
# Skip the first one if it is not from human
|
482 |
+
source = source[1:]
|
483 |
+
|
484 |
+
conv.messages = []
|
485 |
+
for j, sentence in enumerate(source):
|
486 |
+
role = roles[sentence["from"]]
|
487 |
+
assert role == conv.roles[j % 2], f"{i}"
|
488 |
+
conv.append_message(role, sentence["value"])
|
489 |
+
conversations.append(conv.get_prompt())
|
490 |
+
# Tokenize conversations
|
491 |
+
if has_image:
|
492 |
+
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
|
493 |
+
else:
|
494 |
+
input_ids = tokenizer(
|
495 |
+
conversations,
|
496 |
+
return_tensors="pt",
|
497 |
+
padding="longest",
|
498 |
+
max_length=tokenizer.model_max_length,
|
499 |
+
truncation=True,
|
500 |
+
).input_ids
|
501 |
+
|
502 |
+
targets = input_ids.clone()
|
503 |
+
|
504 |
+
assert conv.sep_style == conversation_lib.SeparatorStyle.TWO
|
505 |
+
# Mask targets
|
506 |
+
sep = conv.sep + conv.roles[1] + ": "
|
507 |
+
for conversation, target in zip(conversations, targets):
|
508 |
+
total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
509 |
+
|
510 |
+
rounds = conversation.split(conv.sep2)
|
511 |
+
cur_len = 1
|
512 |
+
target[:cur_len] = IGNORE_INDEX
|
513 |
+
for i, rou in enumerate(rounds):
|
514 |
+
if rou == "":
|
515 |
+
break
|
516 |
+
|
517 |
+
parts = rou.split(sep)
|
518 |
+
if len(parts) != 2:
|
519 |
+
break
|
520 |
+
parts[0] += sep
|
521 |
+
|
522 |
+
if has_image:
|
523 |
+
round_len = len(tokenizer_image_token(rou, tokenizer))
|
524 |
+
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
|
525 |
+
else:
|
526 |
+
round_len = len(tokenizer(rou).input_ids)
|
527 |
+
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
|
528 |
+
|
529 |
+
if i != 0 and not tokenizer.legacy and IS_TOKENIZER_GREATER_THAN_0_14:
|
530 |
+
round_len -= 1
|
531 |
+
instruction_len -= 1
|
532 |
+
|
533 |
+
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
|
534 |
+
|
535 |
+
cur_len += round_len
|
536 |
+
target[cur_len:] = IGNORE_INDEX
|
537 |
+
|
538 |
+
if cur_len < tokenizer.model_max_length:
|
539 |
+
if cur_len != total_len:
|
540 |
+
target[:] = IGNORE_INDEX
|
541 |
+
print(
|
542 |
+
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
|
543 |
+
f" (ignored)"
|
544 |
+
)
|
545 |
+
|
546 |
+
return dict(
|
547 |
+
input_ids=input_ids,
|
548 |
+
labels=targets,
|
549 |
+
)
|
550 |
+
|
551 |
+
|
552 |
+
def preprocess_mpt(
|
553 |
+
sources,
|
554 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
555 |
+
has_image: bool = False
|
556 |
+
) -> Dict:
|
557 |
+
conv = conversation_lib.default_conversation.copy()
|
558 |
+
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
559 |
+
|
560 |
+
# Apply prompt templates
|
561 |
+
conversations = []
|
562 |
+
for i, source in enumerate(sources):
|
563 |
+
if roles[source[0]["from"]] != conv.roles[0]:
|
564 |
+
# Skip the first one if it is not from human
|
565 |
+
source = source[1:]
|
566 |
+
|
567 |
+
conv.messages = []
|
568 |
+
for j, sentence in enumerate(source):
|
569 |
+
role = roles[sentence["from"]]
|
570 |
+
assert role == conv.roles[j % 2], f"{i}"
|
571 |
+
conv.append_message(role, sentence["value"])
|
572 |
+
conversations.append(conv.get_prompt())
|
573 |
+
|
574 |
+
# Tokenize conversations
|
575 |
+
|
576 |
+
if has_image:
|
577 |
+
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
|
578 |
+
else:
|
579 |
+
input_ids = tokenizer(
|
580 |
+
conversations,
|
581 |
+
return_tensors="pt",
|
582 |
+
padding="longest",
|
583 |
+
max_length=tokenizer.model_max_length,
|
584 |
+
truncation=True,
|
585 |
+
).input_ids
|
586 |
+
|
587 |
+
targets = input_ids.clone()
|
588 |
+
assert conv.sep_style == conversation_lib.SeparatorStyle.MPT
|
589 |
+
|
590 |
+
# Mask targets
|
591 |
+
sep = conv.sep + conv.roles[1]
|
592 |
+
for conversation, target in zip(conversations, targets):
|
593 |
+
total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
594 |
+
|
595 |
+
rounds = conversation.split(conv.sep)
|
596 |
+
re_rounds = [conv.sep.join(rounds[:3])] # system + user + gpt
|
597 |
+
for conv_idx in range(3, len(rounds), 2):
|
598 |
+
re_rounds.append(conv.sep.join(rounds[conv_idx:conv_idx+2])) # user + gpt
|
599 |
+
cur_len = 0
|
600 |
+
target[:cur_len] = IGNORE_INDEX
|
601 |
+
for i, rou in enumerate(re_rounds):
|
602 |
+
if rou == "":
|
603 |
+
break
|
604 |
+
|
605 |
+
parts = rou.split(sep)
|
606 |
+
if len(parts) != 2:
|
607 |
+
break
|
608 |
+
parts[0] += sep
|
609 |
+
|
610 |
+
if has_image:
|
611 |
+
round_len = len(tokenizer_image_token(rou, tokenizer))
|
612 |
+
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 1
|
613 |
+
else:
|
614 |
+
round_len = len(tokenizer(rou).input_ids)
|
615 |
+
instruction_len = len(tokenizer(parts[0]).input_ids) - 1
|
616 |
+
|
617 |
+
if i != 0 and getattr(tokenizer, 'legacy', False) and IS_TOKENIZER_GREATER_THAN_0_14:
|
618 |
+
round_len += 1
|
619 |
+
instruction_len += 1
|
620 |
+
|
621 |
+
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
|
622 |
+
|
623 |
+
cur_len += round_len
|
624 |
+
target[cur_len:] = IGNORE_INDEX
|
625 |
+
|
626 |
+
if cur_len < tokenizer.model_max_length:
|
627 |
+
if cur_len != total_len:
|
628 |
+
target[:] = IGNORE_INDEX
|
629 |
+
print(
|
630 |
+
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
|
631 |
+
f" (ignored)"
|
632 |
+
)
|
633 |
+
|
634 |
+
return dict(
|
635 |
+
input_ids=input_ids,
|
636 |
+
labels=targets,
|
637 |
+
)
|
638 |
+
|
639 |
+
|
640 |
+
def preprocess_plain(
|
641 |
+
sources: Sequence[str],
|
642 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
643 |
+
) -> Dict:
|
644 |
+
# add end signal and concatenate together
|
645 |
+
conversations = []
|
646 |
+
for source in sources:
|
647 |
+
assert len(source) == 2
|
648 |
+
assert DEFAULT_IMAGE_TOKEN in source[0]['value']
|
649 |
+
source[0]['value'] = DEFAULT_IMAGE_TOKEN
|
650 |
+
conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep
|
651 |
+
conversations.append(conversation)
|
652 |
+
# tokenize conversations
|
653 |
+
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations]
|
654 |
+
targets = copy.deepcopy(input_ids)
|
655 |
+
for target, source in zip(targets, sources):
|
656 |
+
tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer))
|
657 |
+
target[:tokenized_len] = IGNORE_INDEX
|
658 |
+
|
659 |
+
return dict(input_ids=input_ids, labels=targets)
|
660 |
+
|
661 |
+
|
662 |
+
def preprocess(
|
663 |
+
sources: Sequence[str],
|
664 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
665 |
+
has_image: bool = False
|
666 |
+
) -> Dict:
|
667 |
+
"""
|
668 |
+
Given a list of sources, each is a conversation list. This transform:
|
669 |
+
1. Add signal '### ' at the beginning each sentence, with end signal '\n';
|
670 |
+
2. Concatenate conversations together;
|
671 |
+
3. Tokenize the concatenated conversation;
|
672 |
+
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
|
673 |
+
"""
|
674 |
+
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN:
|
675 |
+
return preprocess_plain(sources, tokenizer)
|
676 |
+
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_2:
|
677 |
+
return preprocess_llama_2(sources, tokenizer, has_image=has_image)
|
678 |
+
if conversation_lib.default_conversation.version.startswith("v1"):
|
679 |
+
return preprocess_v1(sources, tokenizer, has_image=has_image)
|
680 |
+
if conversation_lib.default_conversation.version == "mpt":
|
681 |
+
return preprocess_mpt(sources, tokenizer, has_image=has_image)
|
682 |
+
# add end signal and concatenate together
|
683 |
+
conversations = []
|
684 |
+
for source in sources:
|
685 |
+
header = f"{conversation_lib.default_conversation.system}\n\n"
|
686 |
+
conversation = _add_speaker_and_signal(header, source)
|
687 |
+
conversations.append(conversation)
|
688 |
+
# tokenize conversations
|
689 |
+
def get_tokenize_len(prompts):
|
690 |
+
return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts]
|
691 |
+
|
692 |
+
if has_image:
|
693 |
+
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations]
|
694 |
+
else:
|
695 |
+
conversations_tokenized = _tokenize_fn(conversations, tokenizer)
|
696 |
+
input_ids = conversations_tokenized["input_ids"]
|
697 |
+
|
698 |
+
targets = copy.deepcopy(input_ids)
|
699 |
+
for target, source in zip(targets, sources):
|
700 |
+
if has_image:
|
701 |
+
tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source])
|
702 |
+
else:
|
703 |
+
tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"]
|
704 |
+
speakers = [sentence["from"] for sentence in source]
|
705 |
+
_mask_targets(target, tokenized_lens, speakers)
|
706 |
+
|
707 |
+
return dict(input_ids=input_ids, labels=targets)
|
708 |
+
|
709 |
+
|
710 |
+
class LazySupervisedDataset(Dataset):
|
711 |
+
"""Dataset for supervised fine-tuning."""
|
712 |
+
|
713 |
+
def __init__(self, data_path: str,
|
714 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
715 |
+
data_args: DataArguments):
|
716 |
+
super(LazySupervisedDataset, self).__init__()
|
717 |
+
list_data_dict = json.load(open(data_path, "r"))
|
718 |
+
|
719 |
+
rank0_print("Formatting inputs...Skip in lazy mode")
|
720 |
+
self.tokenizer = tokenizer
|
721 |
+
self.list_data_dict = list_data_dict
|
722 |
+
self.data_args = data_args
|
723 |
+
|
724 |
+
def __len__(self):
|
725 |
+
return len(self.list_data_dict)
|
726 |
+
|
727 |
+
@property
|
728 |
+
def lengths(self):
|
729 |
+
length_list = []
|
730 |
+
for sample in self.list_data_dict:
|
731 |
+
img_tokens = 128 if 'image' in sample else 0
|
732 |
+
length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens)
|
733 |
+
return length_list
|
734 |
+
|
735 |
+
@property
|
736 |
+
def modality_lengths(self):
|
737 |
+
length_list = []
|
738 |
+
for sample in self.list_data_dict:
|
739 |
+
cur_len = sum(len(conv['value'].split()) for conv in sample['conversations'])
|
740 |
+
cur_len = cur_len if 'image' in sample else -cur_len
|
741 |
+
length_list.append(cur_len)
|
742 |
+
return length_list
|
743 |
+
|
744 |
+
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
745 |
+
sources = self.list_data_dict[i]
|
746 |
+
if isinstance(i, int):
|
747 |
+
sources = [sources]
|
748 |
+
assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME
|
749 |
+
if 'image' in sources[0]:
|
750 |
+
image_file = self.list_data_dict[i]['image']
|
751 |
+
image_folder = self.data_args.image_folder
|
752 |
+
processor = self.data_args.image_processor
|
753 |
+
image = Image.open(os.path.join(image_folder, image_file)).convert('RGB')
|
754 |
+
if self.data_args.image_aspect_ratio == 'pad':
|
755 |
+
def expand2square(pil_img, background_color):
|
756 |
+
width, height = pil_img.size
|
757 |
+
if width == height:
|
758 |
+
return pil_img
|
759 |
+
elif width > height:
|
760 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
761 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
762 |
+
return result
|
763 |
+
else:
|
764 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
765 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
766 |
+
return result
|
767 |
+
image = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
|
768 |
+
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
769 |
+
else:
|
770 |
+
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
771 |
+
sources = preprocess_multimodal(
|
772 |
+
copy.deepcopy([e["conversations"] for e in sources]),
|
773 |
+
self.data_args)
|
774 |
+
else:
|
775 |
+
sources = copy.deepcopy([e["conversations"] for e in sources])
|
776 |
+
data_dict = preprocess(
|
777 |
+
sources,
|
778 |
+
self.tokenizer,
|
779 |
+
has_image=('image' in self.list_data_dict[i]))
|
780 |
+
if isinstance(i, int):
|
781 |
+
data_dict = dict(input_ids=data_dict["input_ids"][0],
|
782 |
+
labels=data_dict["labels"][0])
|
783 |
+
|
784 |
+
# image exist in the data
|
785 |
+
if 'image' in self.list_data_dict[i]:
|
786 |
+
data_dict['image'] = image
|
787 |
+
elif self.data_args.is_multimodal:
|
788 |
+
# image does not exist in the data, but the model is multimodal
|
789 |
+
crop_size = self.data_args.image_processor.crop_size
|
790 |
+
data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width'])
|
791 |
+
return data_dict
|
792 |
+
|
793 |
+
|
794 |
+
@dataclass
|
795 |
+
class DataCollatorForSupervisedDataset(object):
|
796 |
+
"""Collate examples for supervised fine-tuning."""
|
797 |
+
|
798 |
+
tokenizer: transformers.PreTrainedTokenizer
|
799 |
+
|
800 |
+
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
|
801 |
+
input_ids, labels = tuple([instance[key] for instance in instances]
|
802 |
+
for key in ("input_ids", "labels"))
|
803 |
+
input_ids = torch.nn.utils.rnn.pad_sequence(
|
804 |
+
input_ids,
|
805 |
+
batch_first=True,
|
806 |
+
padding_value=self.tokenizer.pad_token_id)
|
807 |
+
labels = torch.nn.utils.rnn.pad_sequence(labels,
|
808 |
+
batch_first=True,
|
809 |
+
padding_value=IGNORE_INDEX)
|
810 |
+
input_ids = input_ids[:, :self.tokenizer.model_max_length]
|
811 |
+
labels = labels[:, :self.tokenizer.model_max_length]
|
812 |
+
batch = dict(
|
813 |
+
input_ids=input_ids,
|
814 |
+
labels=labels,
|
815 |
+
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
|
816 |
+
)
|
817 |
+
|
818 |
+
if 'image' in instances[0]:
|
819 |
+
images = [instance['image'] for instance in instances]
|
820 |
+
if all(x is not None and x.shape == images[0].shape for x in images):
|
821 |
+
batch['images'] = torch.stack(images)
|
822 |
+
else:
|
823 |
+
batch['images'] = images
|
824 |
+
|
825 |
+
return batch
|
826 |
+
|
827 |
+
|
828 |
+
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer,
|
829 |
+
data_args) -> Dict:
|
830 |
+
"""Make dataset and collator for supervised fine-tuning."""
|
831 |
+
train_dataset = LazySupervisedDataset(tokenizer=tokenizer,
|
832 |
+
data_path=data_args.data_path,
|
833 |
+
data_args=data_args)
|
834 |
+
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
|
835 |
+
return dict(train_dataset=train_dataset,
|
836 |
+
eval_dataset=None,
|
837 |
+
data_collator=data_collator)
|
838 |
+
|
839 |
+
|
840 |
+
def train(attn_implementation=None):
|
841 |
+
global local_rank
|
842 |
+
parser = transformers.HfArgumentParser(
|
843 |
+
(ModelArguments, DataArguments, TrainingArguments))
|
844 |
+
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
845 |
+
local_rank = training_args.local_rank
|
846 |
+
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
|
847 |
+
if model_args.scales is not None:
|
848 |
+
model_args.scales = [int(i) for i in model_args.scales.split(',')]
|
849 |
+
bnb_model_from_pretrained_args = {}
|
850 |
+
if training_args.bits in [4, 8]:
|
851 |
+
from transformers import BitsAndBytesConfig
|
852 |
+
bnb_model_from_pretrained_args.update(dict(
|
853 |
+
device_map={"": training_args.device},
|
854 |
+
load_in_4bit=training_args.bits == 4,
|
855 |
+
load_in_8bit=training_args.bits == 8,
|
856 |
+
quantization_config=BitsAndBytesConfig(
|
857 |
+
load_in_4bit=training_args.bits == 4,
|
858 |
+
load_in_8bit=training_args.bits == 8,
|
859 |
+
llm_int8_skip_modules=["mm_projector"],
|
860 |
+
llm_int8_threshold=6.0,
|
861 |
+
llm_int8_has_fp16_weight=False,
|
862 |
+
bnb_4bit_compute_dtype=compute_dtype,
|
863 |
+
bnb_4bit_use_double_quant=training_args.double_quant,
|
864 |
+
bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'}
|
865 |
+
)
|
866 |
+
))
|
867 |
+
if model_args.vision_tower is not None:
|
868 |
+
if 'mpt' in model_args.model_name_or_path:
|
869 |
+
config = transformers.AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
|
870 |
+
config.attn_config['attn_impl'] = training_args.mpt_attn_impl
|
871 |
+
model = LlavaMptForCausalLM.from_pretrained(
|
872 |
+
model_args.model_name_or_path,
|
873 |
+
config=config,
|
874 |
+
cache_dir=training_args.cache_dir,
|
875 |
+
**bnb_model_from_pretrained_args
|
876 |
+
)
|
877 |
+
elif '8x' in model_args.model_name_or_path:
|
878 |
+
model = LlavaMixtralForCausalLM.from_pretrained(
|
879 |
+
model_args.model_name_or_path,
|
880 |
+
cache_dir=training_args.cache_dir,
|
881 |
+
attn_implementation=attn_implementation,
|
882 |
+
torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
|
883 |
+
**bnb_model_from_pretrained_args
|
884 |
+
)
|
885 |
+
model.initialize_smoe_modules(model_args=model_args)
|
886 |
+
elif 'mistral' in model_args.model_name_or_path :
|
887 |
+
model = LlavaMistralForCausalLM.from_pretrained(
|
888 |
+
model_args.model_name_or_path,
|
889 |
+
cache_dir=training_args.cache_dir,
|
890 |
+
attn_implementation=attn_implementation,
|
891 |
+
torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
|
892 |
+
**bnb_model_from_pretrained_args
|
893 |
+
)
|
894 |
+
else:
|
895 |
+
model = LlavaLlamaForCausalLM.from_pretrained(
|
896 |
+
model_args.model_name_or_path,
|
897 |
+
cache_dir=training_args.cache_dir,
|
898 |
+
attn_implementation=attn_implementation,
|
899 |
+
torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
|
900 |
+
**bnb_model_from_pretrained_args
|
901 |
+
)
|
902 |
+
else:
|
903 |
+
model = transformers.LlamaForCausalLM.from_pretrained(
|
904 |
+
model_args.model_name_or_path,
|
905 |
+
cache_dir=training_args.cache_dir,
|
906 |
+
attn_implementation=attn_implementation,
|
907 |
+
torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
|
908 |
+
**bnb_model_from_pretrained_args
|
909 |
+
)
|
910 |
+
|
911 |
+
model.config.use_cache = False
|
912 |
+
model.config.training = True
|
913 |
+
model.config.mlp_smoe = model_args.mlp_smoe
|
914 |
+
model.config.clip_smoe = model_args.clip_smoe
|
915 |
+
model.config.balance_loss_coef = model_args.balance_loss_coef
|
916 |
+
model.config.router_z_loss_coef = model_args.router_z_loss_coef
|
917 |
+
model.config.local_rank = local_rank
|
918 |
+
if model_args.freeze_backbone:
|
919 |
+
model.model.requires_grad_(False)
|
920 |
+
|
921 |
+
if training_args.bits in [4, 8]:
|
922 |
+
from peft import prepare_model_for_kbit_training
|
923 |
+
model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
|
924 |
+
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
|
925 |
+
|
926 |
+
if training_args.gradient_checkpointing:
|
927 |
+
if hasattr(model, "enable_input_require_grads"):
|
928 |
+
model.enable_input_require_grads()
|
929 |
+
else:
|
930 |
+
def make_inputs_require_grad(module, input, output):
|
931 |
+
output.requires_grad_(True)
|
932 |
+
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
933 |
+
|
934 |
+
if training_args.lora_enable:
|
935 |
+
from peft import LoraConfig, get_peft_model
|
936 |
+
lora_config = LoraConfig(
|
937 |
+
r=training_args.lora_r,
|
938 |
+
lora_alpha=training_args.lora_alpha,
|
939 |
+
target_modules=find_all_linear_names(model),
|
940 |
+
lora_dropout=training_args.lora_dropout,
|
941 |
+
bias=training_args.lora_bias,
|
942 |
+
task_type="CAUSAL_LM",
|
943 |
+
)
|
944 |
+
if training_args.bits == 16:
|
945 |
+
if training_args.bf16:
|
946 |
+
model.to(torch.bfloat16)
|
947 |
+
if training_args.fp16:
|
948 |
+
model.to(torch.float16)
|
949 |
+
rank0_print("Adding LoRA adapters...")
|
950 |
+
model = get_peft_model(model, lora_config)
|
951 |
+
|
952 |
+
if 'mpt' in model_args.model_name_or_path:
|
953 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
954 |
+
model_args.model_name_or_path,
|
955 |
+
cache_dir=training_args.cache_dir,
|
956 |
+
model_max_length=training_args.model_max_length,
|
957 |
+
padding_side="right"
|
958 |
+
)
|
959 |
+
elif 'mistral' in model_args.model_name_or_path:
|
960 |
+
if '8x' in model_args.model_name_or_path:
|
961 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
962 |
+
model_args.model_name_or_path,
|
963 |
+
cache_dir=training_args.cache_dir,
|
964 |
+
model_max_length=training_args.model_max_length,
|
965 |
+
padding_side="right",
|
966 |
+
use_fast=False
|
967 |
+
)
|
968 |
+
else:
|
969 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
970 |
+
model_args.model_name_or_path,
|
971 |
+
cache_dir=training_args.cache_dir,
|
972 |
+
model_max_length=training_args.model_max_length,
|
973 |
+
padding_side="right",
|
974 |
+
use_fast=False
|
975 |
+
)
|
976 |
+
else:
|
977 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
978 |
+
model_args.model_name_or_path,
|
979 |
+
cache_dir=training_args.cache_dir,
|
980 |
+
model_max_length=training_args.model_max_length,
|
981 |
+
padding_side="right",
|
982 |
+
use_fast=False,
|
983 |
+
)
|
984 |
+
|
985 |
+
|
986 |
+
if model_args.version == "v0":
|
987 |
+
if tokenizer.pad_token is None:
|
988 |
+
smart_tokenizer_and_embedding_resize(
|
989 |
+
special_tokens_dict=dict(pad_token="[PAD]"),
|
990 |
+
tokenizer=tokenizer,
|
991 |
+
model=model,
|
992 |
+
)
|
993 |
+
elif model_args.version == "v0.5":
|
994 |
+
tokenizer.pad_token = tokenizer.unk_token
|
995 |
+
else:
|
996 |
+
tokenizer.pad_token = tokenizer.unk_token
|
997 |
+
if model_args.version in conversation_lib.conv_templates:
|
998 |
+
conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version]
|
999 |
+
else:
|
1000 |
+
conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"]
|
1001 |
+
|
1002 |
+
if model_args.vision_tower is not None:
|
1003 |
+
model.get_model().initialize_vision_modules(
|
1004 |
+
model_args=model_args,
|
1005 |
+
fsdp=training_args.fsdp
|
1006 |
+
)
|
1007 |
+
|
1008 |
+
vision_tower = model.get_vision_tower()
|
1009 |
+
vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device)
|
1010 |
+
|
1011 |
+
data_args.image_processor = vision_tower.image_processor
|
1012 |
+
data_args.is_multimodal = True
|
1013 |
+
|
1014 |
+
model.config.image_aspect_ratio = data_args.image_aspect_ratio
|
1015 |
+
model.config.tokenizer_padding_side = tokenizer.padding_side
|
1016 |
+
model.config.tokenizer_model_max_length = tokenizer.model_max_length
|
1017 |
+
|
1018 |
+
model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter
|
1019 |
+
|
1020 |
+
if model_args.tune_mm_mlp_adapter:
|
1021 |
+
model.requires_grad_(False)
|
1022 |
+
for p in model.get_model().mm_projector.parameters():
|
1023 |
+
p.requires_grad = True
|
1024 |
+
|
1025 |
+
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter
|
1026 |
+
if training_args.freeze_mm_mlp_adapter:
|
1027 |
+
for p in model.get_model().mm_projector.parameters():
|
1028 |
+
p.requires_grad = False
|
1029 |
+
|
1030 |
+
if training_args.bits in [4, 8]:
|
1031 |
+
model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device)
|
1032 |
+
|
1033 |
+
model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end
|
1034 |
+
model.config.mm_projector_lr = training_args.mm_projector_lr
|
1035 |
+
training_args.use_im_start_end = model_args.mm_use_im_start_end
|
1036 |
+
model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token
|
1037 |
+
model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer)
|
1038 |
+
|
1039 |
+
if training_args.bits in [4, 8]:
|
1040 |
+
from peft.tuners.lora import LoraLayer
|
1041 |
+
for name, module in model.named_modules():
|
1042 |
+
if isinstance(module, LoraLayer):
|
1043 |
+
if training_args.bf16:
|
1044 |
+
module = module.to(torch.bfloat16)
|
1045 |
+
if 'norm' in name:
|
1046 |
+
module = module.to(torch.float32)
|
1047 |
+
if 'lm_head' in name or 'embed_tokens' in name:
|
1048 |
+
if hasattr(module, 'weight'):
|
1049 |
+
if training_args.bf16 and module.weight.dtype == torch.float32:
|
1050 |
+
module = module.to(torch.bfloat16)
|
1051 |
+
|
1052 |
+
data_module = make_supervised_data_module(tokenizer=tokenizer,
|
1053 |
+
data_args=data_args)
|
1054 |
+
trainer = LLaVATrainer(model=model,
|
1055 |
+
tokenizer=tokenizer,
|
1056 |
+
args=training_args,
|
1057 |
+
**data_module)
|
1058 |
+
|
1059 |
+
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
|
1060 |
+
trainer.train(resume_from_checkpoint=True)
|
1061 |
+
else:
|
1062 |
+
trainer.train()
|
1063 |
+
trainer.save_state()
|
1064 |
+
model.config.use_cache = True
|
1065 |
+
model.generation_config.do_sample = True
|
1066 |
+
|
1067 |
+
if training_args.lora_enable:
|
1068 |
+
state_dict = get_peft_state_maybe_zero_3(
|
1069 |
+
model.named_parameters(), training_args.lora_bias
|
1070 |
+
)
|
1071 |
+
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(
|
1072 |
+
model.named_parameters()
|
1073 |
+
)
|
1074 |
+
if training_args.local_rank == 0 or training_args.local_rank == -1:
|
1075 |
+
model.config.save_pretrained(training_args.output_dir)
|
1076 |
+
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
|
1077 |
+
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
|
1078 |
+
else:
|
1079 |
+
if training_args.pft:
|
1080 |
+
safe_save_model_for_hf_trainer_pft(trainer=trainer, output_dir=training_args.output_dir)
|
1081 |
+
else:
|
1082 |
+
safe_save_model_for_hf_trainer(trainer=trainer, output_dir=training_args.output_dir)
|
1083 |
+
|
1084 |
+
|
1085 |
+
if __name__ == "__main__":
|
1086 |
+
train()
|
cumo/train/train_mem.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from cumo.train.train import train
|
2 |
+
|
3 |
+
if __name__ == "__main__":
|
4 |
+
train(attn_implementation="flash_attention_2")
|
cumo/train/train_xformers.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Make it more memory efficient by monkey patching the LLaMA model with xformers attention.
|
2 |
+
|
3 |
+
# Need to call this before importing transformers.
|
4 |
+
from cumo.train.llama_xformers_attn_monkey_patch import (
|
5 |
+
replace_llama_attn_with_xformers_attn,
|
6 |
+
)
|
7 |
+
|
8 |
+
replace_llama_attn_with_xformers_attn()
|
9 |
+
|
10 |
+
from cumo.train.train import train
|
11 |
+
|
12 |
+
if __name__ == "__main__":
|
13 |
+
train()
|
cumo/utils.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
# ------------------------------------------------------------------------
|
15 |
+
# Modified from LLaVA (https://github.com/haotian-liu/LLaVA)
|
16 |
+
# Copyright 2024 Jiachen Li
|
17 |
+
# ------------------------------------------------------------------------
|
18 |
+
|
19 |
+
import datetime
|
20 |
+
import logging
|
21 |
+
import logging.handlers
|
22 |
+
import os
|
23 |
+
import sys
|
24 |
+
|
25 |
+
import requests
|
26 |
+
|
27 |
+
from cumo.constants import LOGDIR
|
28 |
+
|
29 |
+
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
|
30 |
+
moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
|
31 |
+
|
32 |
+
handler = None
|
33 |
+
|
34 |
+
|
35 |
+
def build_logger(logger_name, logger_filename):
|
36 |
+
global handler
|
37 |
+
|
38 |
+
formatter = logging.Formatter(
|
39 |
+
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
40 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
41 |
+
)
|
42 |
+
|
43 |
+
# Set the format of root handlers
|
44 |
+
if not logging.getLogger().handlers:
|
45 |
+
logging.basicConfig(level=logging.INFO)
|
46 |
+
logging.getLogger().handlers[0].setFormatter(formatter)
|
47 |
+
|
48 |
+
# Redirect stdout and stderr to loggers
|
49 |
+
stdout_logger = logging.getLogger("stdout")
|
50 |
+
stdout_logger.setLevel(logging.INFO)
|
51 |
+
sl = StreamToLogger(stdout_logger, logging.INFO)
|
52 |
+
sys.stdout = sl
|
53 |
+
|
54 |
+
stderr_logger = logging.getLogger("stderr")
|
55 |
+
stderr_logger.setLevel(logging.ERROR)
|
56 |
+
sl = StreamToLogger(stderr_logger, logging.ERROR)
|
57 |
+
sys.stderr = sl
|
58 |
+
|
59 |
+
# Get logger
|
60 |
+
logger = logging.getLogger(logger_name)
|
61 |
+
logger.setLevel(logging.INFO)
|
62 |
+
|
63 |
+
# Add a file handler for all loggers
|
64 |
+
if handler is None:
|
65 |
+
os.makedirs(LOGDIR, exist_ok=True)
|
66 |
+
filename = os.path.join(LOGDIR, logger_filename)
|
67 |
+
handler = logging.handlers.TimedRotatingFileHandler(
|
68 |
+
filename, when='D', utc=True, encoding='UTF-8')
|
69 |
+
handler.setFormatter(formatter)
|
70 |
+
|
71 |
+
for name, item in logging.root.manager.loggerDict.items():
|
72 |
+
if isinstance(item, logging.Logger):
|
73 |
+
item.addHandler(handler)
|
74 |
+
|
75 |
+
return logger
|
76 |
+
|
77 |
+
|
78 |
+
class StreamToLogger(object):
|
79 |
+
"""
|
80 |
+
Fake file-like stream object that redirects writes to a logger instance.
|
81 |
+
"""
|
82 |
+
def __init__(self, logger, log_level=logging.INFO):
|
83 |
+
self.terminal = sys.stdout
|
84 |
+
self.logger = logger
|
85 |
+
self.log_level = log_level
|
86 |
+
self.linebuf = ''
|
87 |
+
|
88 |
+
def __getattr__(self, attr):
|
89 |
+
return getattr(self.terminal, attr)
|
90 |
+
|
91 |
+
def write(self, buf):
|
92 |
+
temp_linebuf = self.linebuf + buf
|
93 |
+
self.linebuf = ''
|
94 |
+
for line in temp_linebuf.splitlines(True):
|
95 |
+
# From the io.TextIOWrapper docs:
|
96 |
+
# On output, if newline is None, any '\n' characters written
|
97 |
+
# are translated to the system default line separator.
|
98 |
+
# By default sys.stdout.write() expects '\n' newlines and then
|
99 |
+
# translates them so this is still cross platform.
|
100 |
+
if line[-1] == '\n':
|
101 |
+
self.logger.log(self.log_level, line.rstrip())
|
102 |
+
else:
|
103 |
+
self.linebuf += line
|
104 |
+
|
105 |
+
def flush(self):
|
106 |
+
if self.linebuf != '':
|
107 |
+
self.logger.log(self.log_level, self.linebuf.rstrip())
|
108 |
+
self.linebuf = ''
|
109 |
+
|
110 |
+
|
111 |
+
def disable_torch_init():
|
112 |
+
"""
|
113 |
+
Disable the redundant torch default initialization to accelerate model creation.
|
114 |
+
"""
|
115 |
+
import torch
|
116 |
+
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
117 |
+
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
118 |
+
|
119 |
+
|
120 |
+
def violates_moderation(text):
|
121 |
+
"""
|
122 |
+
Check whether the text violates OpenAI moderation API.
|
123 |
+
"""
|
124 |
+
url = "https://api.openai.com/v1/moderations"
|
125 |
+
headers = {"Content-Type": "application/json",
|
126 |
+
"Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
|
127 |
+
text = text.replace("\n", "")
|
128 |
+
data = "{" + '"input": ' + f'"{text}"' + "}"
|
129 |
+
data = data.encode("utf-8")
|
130 |
+
try:
|
131 |
+
ret = requests.post(url, headers=headers, data=data, timeout=5)
|
132 |
+
flagged = ret.json()["results"][0]["flagged"]
|
133 |
+
except requests.exceptions.RequestException as e:
|
134 |
+
flagged = False
|
135 |
+
except KeyError as e:
|
136 |
+
flagged = False
|
137 |
+
|
138 |
+
return flagged
|
139 |
+
|
140 |
+
|
141 |
+
def pretty_print_semaphore(semaphore):
|
142 |
+
if semaphore is None:
|
143 |
+
return "None"
|
144 |
+
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
|