File size: 19,016 Bytes
630de19 0605887 630de19 3b7e80c 630de19 0605887 630de19 c20b42d 630de19 c20b42d 630de19 0605887 c20b42d 630de19 c20b42d 630de19 c20b42d 630de19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
import streamlit as st
import whisper
from deep_translator import GoogleTranslator
from gtts import gTTS
from io import BytesIO
import os
import tempfile
from PIL import Image
import easyocr
import cv2
import numpy as np
import time
# Page configuration
st.set_page_config(
page_title="Polyglot - Multilingual Communication Suite",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS for better UI
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
font-weight: 700;
color: #1E88E5;
margin-bottom: 1rem;
text-align: center;
}
.sub-header {
font-size: 1.5rem;
font-weight: 500;
color: #424242;
margin-bottom: 1rem;
}
.card {
padding: 1.5rem;
border-radius: 0.7rem;
background-color: #f8f9fa;
box-shadow: 0 0.15rem 1.75rem 0 rgba(58, 59, 69, 0.15);
margin-bottom: 1.5rem;
}
.action-button {
background-color: #1E88E5;
color: white;
border-radius: 0.3rem;
padding: 0.5rem 1rem;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 1rem;
margin: 0.5rem 0;
cursor: pointer;
}
.stProgress .st-eb {
background-color: #1E88E5;
}
.stTabs [data-baseweb="tab-list"] {
gap: 1px;
}
.stTabs [data-baseweb="tab"] {
background-color: #F0F2F6;
border-radius: 4px 4px 0 0;
border: none;
padding: 10px 16px;
color: #424242;
}
.stTabs [aria-selected="true"] {
background-color: #1E88E5 !important;
color: white !important;
}
.stMarkdown a {
color: #1E88E5;
}
footer {visibility: hidden;}
</style>
""", unsafe_allow_html=True)
# Initialize app states
if "transcription" not in st.session_state:
st.session_state.transcription = ""
if "translated_text" not in st.session_state:
st.session_state.translated_text = ""
if "extracted_text" not in st.session_state:
st.session_state.extracted_text = ""
if "translated_ocr_text" not in st.session_state:
st.session_state.translated_ocr_text = ""
if "progress" not in st.session_state:
st.session_state.progress = 0
if "processing" not in st.session_state:
st.session_state.processing = False
# App Header
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
st.markdown('<div class="main-header">π Polyglot</div>', unsafe_allow_html=True)
st.markdown("""
<div style="text-align: center; margin-bottom: 2rem;">
Your all-in-one solution for transcription, translation, and text extraction
</div>
""", unsafe_allow_html=True)
# Sidebar with improved UI
with st.sidebar:
st.image("https://via.placeholder.com/150x150.png?text=Polyglot", width=150)
st.markdown("### Settings")
with st.expander("Translation Settings", expanded=True):
supported_languages = GoogleTranslator().get_supported_languages()
language = st.sidebar.selectbox("Select Language", options=supported_languages)
#language = st.selectbox(
# "Target Language",
# options=list(googletrans.LANGUAGES.keys()),
# format_func=lambda x: f"{googletrans.LANGUAGES[x].capitalize()} ({x})",
# index=list(googletrans.LANGUAGES.keys()).index('en')
#)
with st.expander("OCR Settings", expanded=True):
available_languages = ['en', 'es', 'fr', 'de', 'zh', 'ja', 'ko', 'ar', 'hi']
language_names = {
'en': 'English', 'es': 'Spanish', 'fr': 'French',
'de': 'German', 'zh': 'Chinese', 'ja': 'Japanese',
'ko': 'Korean', 'ar': 'Arabic', 'hi': 'Hindi'
}
ocr_languages = st.multiselect(
"OCR Languages",
options=available_languages,
format_func=lambda x: language_names.get(x, x.capitalize()),
default=['en']
)
st.markdown("### About")
st.markdown("""
Polyglot helps break language barriers with AI-powered
translation and transcription tools.
**Features:**
- Audio transcription
- Text translation
- OCR text extraction
- Text-to-speech conversion
""")
# Initialize models (with loading spinners)
@st.cache_resource(show_spinner=False)
def load_whisper_model():
with st.spinner("Loading speech recognition model..."):
return whisper.load_model("base")
@st.cache_resource(show_spinner=False)
def load_ocr_reader(languages):
with st.spinner("Loading OCR model..."):
return easyocr.Reader(languages if languages else ['en'])
whisper_model = load_whisper_model()
def translate_text(text, target_language='en'):
translator = GoogleTranslator(source='auto', target=target_language)
return translator.translate(text)
# Navigation
icons = {"Audio Transcription": "π€", "Image OCR": "π", "Help": "β"}
selected_tab = st.radio(
"Choose functionality:",
["Audio Transcription", "Image OCR", "Help"],
format_func=lambda x: f"{icons[x]} {x}",
horizontal=True
)
# Helper functions
def transcribe_audio(audio_file):
"""Transcribe audio using Whisper."""
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
temp_audio.write(audio_file.read())
result = whisper_model.transcribe(temp_audio.name)
os.remove(temp_audio.name)
return result['text']
def text_to_speech(text, lang='en'):
"""Convert text to speech using gTTS."""
tts = gTTS(text=text, lang=lang)
audio_bytes = BytesIO()
tts.write_to_fp(audio_bytes)
return audio_bytes.getvalue()
def draw_boxes(image, results):
"""Draw bounding boxes around detected text."""
image_np = np.array(image)
for (bbox, text, prob) in results:
# Unpack the bounding box
(top_left, top_right, bottom_right, bottom_left) = bbox
top_left = tuple(map(int, top_left))
bottom_right = tuple(map(int, bottom_right))
# Draw the bounding box
cv2.rectangle(image_np, top_left, bottom_right, (0, 0, 255), 2)
# Add text label with confidence score
label = f"{text} ({prob:.2f})"
cv2.putText(
image_np, label, (top_left[0], top_left[1] - 10),
cv2.FONT_HERSHEY_SIMPLEX, 1.4, (0, 0, 255), 2
)
return image_np
def simulate_progress():
"""Simulate progress for better user experience."""
if st.session_state.processing:
progress_bar = st.progress(0)
for i in range(100):
time.sleep(0.01)
progress_bar.progress(i + 1)
st.session_state.processing = False
return progress_bar
return None
# Tab 1: Audio Transcription
if selected_tab == "Audio Transcription":
st.markdown('<div class="sub-header">π€ Audio Transcription and Translation</div>', unsafe_allow_html=True)
col1, col2 = st.columns([1, 1])
with col1:
st.markdown('<div class="card">', unsafe_allow_html=True)
st.markdown("### Upload Audio")
st.write("Supported formats: WAV, MP3, M4A")
uploaded_audio = st.file_uploader(
"Drag and drop your audio file here",
type=["wav", "mp3", "m4a"],
key="audio_uploader"
)
if uploaded_audio:
st.audio(uploaded_audio, format=f"audio/{uploaded_audio.name.split('.')[-1]}")
if st.button("π Transcribe Audio", key="transcribe_btn"):
st.session_state.processing = True
progress_bar = simulate_progress()
try:
st.session_state.transcription = transcribe_audio(uploaded_audio)
st.success("β
Transcription complete!")
except Exception as e:
st.error(f"Error during transcription: {str(e)}")
st.markdown('</div>', unsafe_allow_html=True)
with col2:
st.markdown('<div class="card">', unsafe_allow_html=True)
st.markdown("### Results")
tabs = st.tabs(["Transcription", "Translation", "Audio Output"])
with tabs[0]:
if st.session_state.transcription:
st.text_area(
"Original Text:",
st.session_state.transcription,
height=200
)
else:
st.info("Transcribed text will appear here after processing.")
with tabs[1]:
if st.session_state.transcription:
if st.button("π Translate Text", key="translate_btn"):
st.session_state.processing = True
progress_bar = simulate_progress()
try:
translation = translate_text(st.session_state.extracted_text, target_language=language)
st.session_state.translated_ocr_text = translation
st.success("β
Translation complete!")
except Exception as e:
st.error(f"Error during translation: {str(e)}")
if st.session_state.translated_text:
st.text_area(
f"Translated to {language.capitalize()}:",
st.session_state.translated_ocr_text,
height=200
)
else:
st.info("Translated text will appear here after processing.")
with tabs[2]:
if st.session_state.translated_text:
try:
audio_output = text_to_speech(st.session_state.translated_text, language)
st.audio(audio_output, format="audio/mp3")
st.download_button(
label="Download Audio",
data=audio_output,
file_name=f"translated_audio_{language}.mp3",
mime="audio/mp3"
)
except Exception as e:
st.error(f"Error generating speech: {str(e)}")
else:
st.info("Audio output will be available after translation.")
st.markdown('</div>', unsafe_allow_html=True)
# Tab 2: Image OCR
elif selected_tab == "Image OCR":
st.markdown('<div class="sub-header">π Image OCR and Translation</div>', unsafe_allow_html=True)
reader = load_ocr_reader(ocr_languages)
col1, col2 = st.columns([1, 1])
with col1:
st.markdown('<div class="card">', unsafe_allow_html=True)
st.markdown("### Upload Image")
st.write("Supported formats: JPG, PNG, JPEG")
uploaded_image = st.file_uploader(
"Drag and drop your image file here",
type=["jpg", "jpeg", "png"],
key="image_uploader"
)
if uploaded_image:
image = Image.open(uploaded_image)
st.image(image, caption="Uploaded Image", use_container_width=True)
if st.button("π Extract Text", key="extract_btn"):
st.session_state.processing = True
progress_bar = simulate_progress()
try:
image_np = np.array(image)
results = reader.readtext(image_np)
st.session_state.extracted_text = " ".join([result[1] for result in results])
# Store the image with boxes for display later
if results:
st.session_state.image_with_boxes = draw_boxes(image, results)
st.success("β
Text extraction complete!")
except Exception as e:
st.error(f"Error during text extraction: {str(e)}")
st.markdown('</div>', unsafe_allow_html=True)
with col2:
st.markdown('<div class="card">', unsafe_allow_html=True)
st.markdown("### Results")
tabs = st.tabs(["Extracted Text", "Text Detection", "Translation", "Audio Output"])
with tabs[0]:
if st.session_state.extracted_text:
st.text_area(
"Extracted Text:",
st.session_state.extracted_text,
height=150
)
else:
st.info("Extracted text will appear here after processing.")
with tabs[1]:
if hasattr(st.session_state, 'image_with_boxes'):
st.image(
st.session_state.image_with_boxes,
caption="Text Detection Visualization",
use_container_width=True
)
else:
st.info("Text detection visualization will appear here after processing.")
with tabs[2]:
if st.session_state.extracted_text:
if st.button("π Translate Extracted Text", key="translate_ocr_btn"):
st.session_state.processing = True
progress_bar = simulate_progress()
try:
#translation = asyncio.run(translator.translate(
# st.session_state.extracted_text, dest=language
#))
translation = translate_text(st.session_state.extracted_text, target_language=language)
st.session_state.translated_ocr_text = translation
st.success("β
Translation complete!")
except Exception as e:
st.error(f"Error during translation: {str(e)}")
if st.session_state.translated_ocr_text:
st.text_area(
f"Translated to {language.capitalize()}:",
st.session_state.translated_ocr_text,
height=150
)
else:
st.info("Translated text will appear here after processing.")
with tabs[3]:
if st.session_state.translated_ocr_text:
try:
audio_output = text_to_speech(st.session_state.translated_ocr_text, language)
st.audio(audio_output, format="audio/mp3")
st.download_button(
label="Download Audio",
data=audio_output,
file_name=f"ocr_translated_audio_{language}.mp3",
mime="audio/mp3"
)
except Exception as e:
st.error(f"Error generating speech: {str(e)}")
else:
st.info("Audio output will be available after translation.")
st.markdown('</div>', unsafe_allow_html=True)
# Tab 3: Help
elif selected_tab == "Help":
st.markdown('<div class="sub-header">β Help & Documentation</div>', unsafe_allow_html=True)
st.markdown('<div class="card">', unsafe_allow_html=True)
st.markdown("### Getting Started")
st.markdown("""
Welcome to Polyglot! This app helps you break language barriers with AI-powered transcription, translation, and OCR capabilities.
**Quick Start Guide:**
1. Choose a feature from the navigation bar (Audio Transcription or Image OCR)
2. Upload your file (audio or image)
3. Process the file (transcribe or extract text)
4. Translate the extracted text to your target language
5. Generate and download speech from the translated text
For best results, use clear audio recordings and high-quality images with legible text.
""")
st.markdown('</div>', unsafe_allow_html=True)
col1, col2 = st.columns([1, 1])
with col1:
st.markdown('<div class="card">', unsafe_allow_html=True)
st.markdown("### Audio Transcription Tips")
st.markdown("""
- **Supported formats:** WAV, MP3, M4A
- **Best audio quality:** Clear speech, minimal background noise
- **Recommended duration:** 5 seconds to 10 minutes
- **Languages:** Multiple languages supported via Whisper model
**Troubleshooting:**
- If transcription is inaccurate, try reducing background noise
- For long files, allow extra processing time
- If you encounter errors, try a different audio format
""")
st.markdown('</div>', unsafe_allow_html=True)
with col2:
st.markdown('<div class="card">', unsafe_allow_html=True)
st.markdown("### Image OCR Tips")
st.markdown("""
- **Supported formats:** JPG, PNG, JPEG
- **Best image quality:** High resolution, good lighting, clear contrast
- **OCR languages:** Select appropriate language(s) for your text
- **Text styles:** Works with printed text and some handwriting
**Troubleshooting:**
- If text detection fails, try improving image contrast
- For complex layouts, results may vary
- Multi-language documents may require multiple language selections
""")
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('<div class="card">', unsafe_allow_html=True)
st.markdown("### Frequently Asked Questions")
with st.expander("What languages are supported for translation?"):
st.write("Polyglot supports translation to and from over 100 languages using Google Translate's API.")
with st.expander("How accurate is the audio transcription?"):
st.write("The app uses OpenAI's Whisper model which provides good accuracy for clear speech. Performance may vary with accents, background noise, and audio quality.")
with st.expander("Can I process handwritten text?"):
st.write("Yes, EasyOCR can detect some handwritten text, but performance is best with printed text. Results depend on handwriting clarity and image quality.")
with st.expander("Is there a file size limit?"):
st.write("Streamlit has a default file size limit of 200MB, but we recommend keeping audio files under 10MB and images under 5MB for optimal performance.")
with st.expander("How can I improve the translation quality?"):
st.write("Ensure the transcription or text extraction is accurate first. Clear, grammatically correct source text leads to better translations.")
st.markdown('</div>', unsafe_allow_html=True)
# Footer
st.markdown("""
<div style="text-align: center; margin-top: 2rem; padding: 1rem; background-color: #f0f2f6; border-radius: 0.7rem;">
<p>Created with β€οΈ using Streamlit, Whisper, EasyOCR, and Google Translate</p>
<p>Β© 2025 Polyglot - Breaking language barriers with AI</p>
</div>
""", unsafe_allow_html=True) |