File size: 3,893 Bytes
f45aefd
50e7fdf
 
 
 
 
 
 
f45aefd
d835849
 
 
f45aefd
1e24872
a1c4898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d835849
1e24872
 
a1c4898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e24872
d835849
1e24872
a1c4898
 
d707b83
a1c4898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d707b83
f45aefd
d835849
 
 
6c92a72
5312728
a1c4898
 
 
6c92a72
a1c4898
d835849
5312728
d835849
 
 
a1c4898
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Attempt to import cv2 and install opencv-python-headless if not available
try:
    import cv2
except ImportError:
    import subprocess
    subprocess.check_call(["pip", "install", "opencv-python-headless"])
    import cv2

from PIL import Image
import numpy as np
import gradio as gr

# Function to convert image to sketch
def convert_to_sketch(img, blur_strength, brightness, contrast):
    try:
        # Convert PIL Image to numpy array (BGR format for OpenCV)
        img = np.array(img)
        
        # Ensure blur_strength is odd
        blur_strength = max(1, int(blur_strength))
        if blur_strength % 2 == 0:
            blur_strength += 1
            
        # Convert the image to grayscale
        img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
        
        # Invert the grayscale image
        img_inverted = 255 - img_gray
        
        # Apply Gaussian blur to the inverted image
        img_blur = cv2.GaussianBlur(img_inverted, (blur_strength, blur_strength), 0)
        
        # Blend the grayscale and blurred inverted images
        # Avoid division by zero by adding a small constant
        denominator = 255 - img_blur
        denominator[denominator == 0] = 1  # Prevent division by zero
        
        img_blend = cv2.multiply(img_gray, 256.0 / denominator)
        
        # Clip values to valid range
        img_blend = np.clip(img_blend, 0, 255).astype(np.uint8)
        
        # Adjust brightness and contrast
        sketch_with_bg = adjust_brightness_contrast(img_blend, brightness, contrast)
        
        return sketch_with_bg
        
    except Exception as e:
        print(f"Error in convert_to_sketch: {str(e)}")
        return None

# Function to adjust brightness and contrast
def adjust_brightness_contrast(img, brightness, contrast):
    try:
        # Ensure brightness is within valid range
        brightness = float(brightness)
        contrast = float(contrast)
        
        # Apply contrast first
        img = cv2.convertScaleAbs(img, alpha=contrast)
        
        # Apply brightness
        if brightness > 0:
            img = cv2.add(img, np.ones_like(img) * brightness)
        else:
            img = cv2.subtract(img, np.ones_like(img) * abs(brightness))
            
        # Ensure output is in valid range
        img = np.clip(img, 0, 255).astype(np.uint8)
        return img
        
    except Exception as e:
        print(f"Error in adjust_brightness_contrast: {str(e)}")
        return None

# Gradio interface function
def sketch_interface(image, blur_strength, brightness, contrast):
    if image is None:
        print("Error: No input image provided!")
        return None
        
    try:
        # Convert the input image to a sketch with adjustments
        sketch = convert_to_sketch(image, blur_strength, brightness, contrast)
        
        if sketch is None:
            print("Error: Sketch conversion failed!")
            return None
            
        # Convert the processed numpy array back to a PIL Image
        output_image = Image.fromarray(sketch)
        
        return output_image
        
    except Exception as e:
        print(f"Error in sketch_interface: {str(e)}")
        return None

# Create Gradio interface
interface = gr.Interface(
    fn=sketch_interface,
    inputs=[
        gr.Image(type="pil", label="Upload Image"),
        gr.Slider(minimum=1, maximum=51, step=2, value=21, label="Blur Strength"),
        gr.Slider(minimum=-100, maximum=100, value=0, label="Brightness"),
        gr.Slider(minimum=0.1, maximum=3, step=0.1, value=1, label="Contrast")
    ],
    outputs=gr.Image(type="pil", label="Sketch Output"),
    title="Cartoon to Sketch Converter",
    description="Upload an image to convert it into a sketch, adjust the blur strength, brightness, and contrast for different effects."
)

# Launch the Gradio app
interface.launch()