Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
# Load Hugging Face models | |
# Text generation for keyword suggestions | |
keyword_generator = pipeline("text-generation", model="gpt2", tokenizer="gpt2") | |
# Sentiment analysis for niche review insights | |
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") | |
# Function to generate keyword suggestions | |
def suggest_keywords(prompt): | |
results = keyword_generator(prompt, max_length=50, num_return_sequences=3) | |
suggestions = [res["text"].strip() for res in results] | |
return "\n".join(suggestions) | |
# Function to analyze sentiment of user-input text | |
def analyze_sentiment(text): | |
sentiments = sentiment_analyzer(text) | |
return sentiments | |
# Gradio Interface Design | |
with gr.Blocks() as app: | |
gr.Markdown( | |
""" | |
# KDP Keyword Suggestion App | |
Generate profitable KDP coloring book niches and analyze customer feedback! | |
""" | |
) | |
# Section for keyword generation | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox( | |
label="Enter Keyword Prompt", | |
placeholder="E.g., coloring book for kids about", | |
) | |
keyword_output = gr.Textbox(label="Generated Keywords", lines=5) | |
keyword_button = gr.Button("Generate Keywords") | |
keyword_button.click(suggest_keywords, inputs=prompt_input, outputs=keyword_output) | |
# Section for sentiment analysis | |
with gr.Row(): | |
with gr.Column(): | |
review_input = gr.Textbox( | |
label="Enter Text for Sentiment Analysis", | |
placeholder="Paste a customer review or feedback here...", | |
lines=4, | |
) | |
sentiment_output = gr.Label(label="Sentiment Analysis Result") | |
sentiment_button = gr.Button("Analyze Sentiment") | |
sentiment_button.click(analyze_sentiment, inputs=review_input, outputs=sentiment_output) | |
# Footer | |
gr.Markdown("Built with ❤️ using Hugging Face and Gradio for KDP enthusiasts!") | |
# Launch the app | |
app.launch() |