Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
from pytrends.request import TrendReq
|
3 |
import pandas as pd
|
4 |
-
from datetime import datetime
|
5 |
-
import time
|
6 |
from collections import defaultdict
|
7 |
import plotly.express as px
|
|
|
8 |
|
9 |
def analyze_coloring_trends(region='US'):
|
|
|
10 |
pytrends = TrendReq(hl='en-US', tz=360)
|
11 |
|
|
|
12 |
coloring_categories = [
|
13 |
'adult coloring books', 'mandala coloring',
|
14 |
'animal coloring', 'flower coloring',
|
@@ -17,19 +18,24 @@ def analyze_coloring_trends(region='US'):
|
|
17 |
|
18 |
trending_keywords = defaultdict(int)
|
19 |
results = []
|
20 |
-
|
21 |
for category in coloring_categories:
|
22 |
try:
|
|
|
|
|
|
|
23 |
pytrends.build_payload(
|
24 |
kw_list=[category],
|
25 |
cat=0,
|
26 |
-
timeframe='today
|
27 |
geo=region
|
28 |
)
|
29 |
|
|
|
30 |
related_queries = pytrends.related_queries()
|
31 |
|
32 |
-
|
|
|
33 |
for row in related_queries[category]['top'].itertuples():
|
34 |
trending_keywords[row.query] += row.value
|
35 |
results.append({
|
@@ -37,15 +43,24 @@ def analyze_coloring_trends(region='US'):
|
|
37 |
'score': row.value,
|
38 |
'category': category
|
39 |
})
|
|
|
|
|
40 |
|
41 |
-
time.sleep(1)
|
42 |
-
|
43 |
except Exception as e:
|
|
|
44 |
continue
|
45 |
|
|
|
46 |
df = pd.DataFrame(results)
|
47 |
|
48 |
-
#
|
|
|
|
|
|
|
|
|
|
|
49 |
fig = px.bar(
|
50 |
df.nlargest(15, 'score'),
|
51 |
x='keyword',
|
@@ -56,10 +71,11 @@ def analyze_coloring_trends(region='US'):
|
|
56 |
)
|
57 |
fig.update_layout(xaxis_tickangle=-45)
|
58 |
|
59 |
-
#
|
60 |
top_keywords = df.nlargest(10, 'score')[['keyword', 'score', 'category']]
|
61 |
-
top_keywords_str = top_keywords.to_string()
|
62 |
|
|
|
63 |
recommendations = f"""
|
64 |
Top Trending Categories in {region}:
|
65 |
1. {coloring_categories[0]}
|
|
|
1 |
import gradio as gr
|
2 |
from pytrends.request import TrendReq
|
3 |
import pandas as pd
|
|
|
|
|
4 |
from collections import defaultdict
|
5 |
import plotly.express as px
|
6 |
+
import time
|
7 |
|
8 |
def analyze_coloring_trends(region='US'):
|
9 |
+
# Initialize Google Trends connection
|
10 |
pytrends = TrendReq(hl='en-US', tz=360)
|
11 |
|
12 |
+
# Define categories to analyze
|
13 |
coloring_categories = [
|
14 |
'adult coloring books', 'mandala coloring',
|
15 |
'animal coloring', 'flower coloring',
|
|
|
18 |
|
19 |
trending_keywords = defaultdict(int)
|
20 |
results = []
|
21 |
+
|
22 |
for category in coloring_categories:
|
23 |
try:
|
24 |
+
print(f"Fetching data for category: {category}")
|
25 |
+
|
26 |
+
# Build payload with extended timeframe to capture more trends
|
27 |
pytrends.build_payload(
|
28 |
kw_list=[category],
|
29 |
cat=0,
|
30 |
+
timeframe='today 12-m', # Extended timeframe for better results
|
31 |
geo=region
|
32 |
)
|
33 |
|
34 |
+
# Fetch related queries
|
35 |
related_queries = pytrends.related_queries()
|
36 |
|
37 |
+
# Ensure data exists for the category
|
38 |
+
if related_queries and related_queries[category]['top'] is not None:
|
39 |
for row in related_queries[category]['top'].itertuples():
|
40 |
trending_keywords[row.query] += row.value
|
41 |
results.append({
|
|
|
43 |
'score': row.value,
|
44 |
'category': category
|
45 |
})
|
46 |
+
else:
|
47 |
+
print(f"No data for category: {category}")
|
48 |
|
49 |
+
time.sleep(1) # Pause to respect Google Trends rate limits
|
50 |
+
|
51 |
except Exception as e:
|
52 |
+
print(f"Error fetching data for {category}: {e}")
|
53 |
continue
|
54 |
|
55 |
+
# Create DataFrame from results
|
56 |
df = pd.DataFrame(results)
|
57 |
|
58 |
+
# Check if DataFrame has any data
|
59 |
+
if df.empty:
|
60 |
+
print("No data was retrieved.")
|
61 |
+
return "No data available for the selected categories in this region.", "", ""
|
62 |
+
|
63 |
+
# Create bar chart visualization
|
64 |
fig = px.bar(
|
65 |
df.nlargest(15, 'score'),
|
66 |
x='keyword',
|
|
|
71 |
)
|
72 |
fig.update_layout(xaxis_tickangle=-45)
|
73 |
|
74 |
+
# Prepare top 10 keywords for display
|
75 |
top_keywords = df.nlargest(10, 'score')[['keyword', 'score', 'category']]
|
76 |
+
top_keywords_str = top_keywords.to_string(index=False)
|
77 |
|
78 |
+
# Recommendations based on the analysis
|
79 |
recommendations = f"""
|
80 |
Top Trending Categories in {region}:
|
81 |
1. {coloring_categories[0]}
|