Spaces:
Runtime error
Runtime error
File size: 28,326 Bytes
92562ce 98eb3dc 92562ce 98eb3dc 0ee5994 98eb3dc c74c3b3 98eb3dc c74c3b3 98eb3dc c74c3b3 98eb3dc c74c3b3 98eb3dc c74c3b3 98eb3dc c74c3b3 98eb3dc c74c3b3 98eb3dc c74c3b3 98eb3dc c74c3b3 98eb3dc c74c3b3 98eb3dc c74c3b3 98eb3dc c74c3b3 98eb3dc c74c3b3 98eb3dc c74c3b3 98eb3dc c74c3b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
import streamlit as st
import numpy as np
import plotly.figure_factory as ff
import plotly.graph_objects as go
import plotly.express as px
import requests
import json
import pandas as pd
import shutil
import os
from openai import AzureOpenAI
import base64
import cv2
from PIL import Image
ACCOUNT_ID = "act_416207949073936"
PAGE_ID = "63257509478"
OPENAI_API = os.getenv("OPENAI_API")
ACCESS_TOKEN = os.getenv("ACCESS_TOKEN")
BIG_DATASET = None
ANALYSIS_TYPE = {
"OUTCOME_SALES": "ROAS",
"OUTCOME_AWARENESS": "ENGAGEMENT",
"OUTCOME_LEADS": "ENGAGEMENT"
}
API_BASE = 'https://bestever-vision.openai.azure.com/'
DEPLOYMENT_NAME = 'vision'
API_VERSION = '2023-12-01-preview' # this might change in the future
API_URL = f"{API_BASE}openai/deployments/{DEPLOYMENT_NAME}/extensions"
client = AzureOpenAI(
api_key=OPENAI_API,
api_version=API_VERSION,
base_url=API_URL,
)
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def call_gpt_vision(client, images_path, user_prompt):
"""Call the GPT4 Vision API to generate tags."""
images_content = [
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{encode_image(image_path)}",
},
}
for image_path in images_path
]
user_content = [
{"type": "text", "text": user_prompt},
]
user_content += images_content
response = client.chat.completions.create(
model=DEPLOYMENT_NAME,
messages=[
{"role": "user", "content": user_content},
],
max_tokens=2000,
)
return response
def parse_tags_from_content(response):
"""Parse the tags from the response."""
tags = []
content = response.choices[0].message.content
for full_tag in content.split("\n"):
splitted_fields = full_tag.split(":")
if len(splitted_fields) < 2:
continue
tag_name = splitted_fields[0]
tag_details = ":".join(splitted_fields[1:])
tag_element = {"name": tag_name, "metadata": {"details": tag_details}}
tags.append(tag_element)
return tags
def get_campaigns(account_id):
url = f"{account_id}/insights"
params = {
"date_preset": "last_90d",
"fields": "campaign_id,campaign_name,impressions,spend,objective",
"level": "campaign",
"access_token": ACCESS_TOKEN,
}
return call_graph_api(url, params)
def get_adsets(campaign_id):
url = f"{campaign_id}/insights"
params = {
"date_preset": "last_90d",
"fields": "adset_id,adset_name,impressions,spend",
"level": "adset",
"access_token": ACCESS_TOKEN,
}
return call_graph_api(url, params)
def get_ads(adset_id):
url = f"{adset_id}/insights"
params = {
"date_preset": "last_90d",
"fields": "ad_name,ad_id,impressions,spend,video_play_actions,video_p25_watched_actions,video_p50_watched_actions,video_p75_watched_actions,video_p100_watched_actions,video_play_curve_actions,purchase_roas,cost_per_action_type,objective",
"breakdowns": "age,gender",
"limit": 1000,
"level": "ad",
"access_token": ACCESS_TOKEN,
}
return call_graph_api(url, params)
def save_image_from_url(url, filename):
res = requests.get(url, stream = True)
if res.status_code == 200:
with open(filename,'wb') as f:
shutil.copyfileobj(res.raw, f)
return True
return False
def extract_specific_frame(video_path, frame_position, output_image):
# Open the video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print("Error opening video file")
return
# Get the total number of frames
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Calculate the frame index based on the position
if frame_position == 'middle':
frame_index = total_frames // 2
elif frame_position == 'last':
frame_index = total_frames - 1
else: # 'first' or any other input defaults to the first frame
frame_index = 0
# Set the current frame position
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_index)
# Read the frame
ret, frame = cap.read()
if ret:
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
frame.save(output_image, "JPEG")
else:
print(f"Error reading the {frame_position} frame")
# Release the video capture object
cap.release()
def split_video_in_frames(video_path):
output_path = video_path.split(".")[0]
extract_specific_frame(video_path, 'first', output_path + "_first.jpg")
extract_specific_frame(video_path, 'middle', output_path + "_middle.jpg")
extract_specific_frame(video_path, 'last', output_path + "_last.jpg")
def get_creative_assets(ad_id):
# checking if the asset already exists
if os.path.exists(f'assets/{ad_id}.png') or os.path.exists(f'assets/{ad_id}.mp4') or os.path.exists(f'assets/{ad_id}.jpg'):
return
url = f"{ad_id}"
params = {
"fields": "creative{video_id,id,effective_object_story_id,image_url}",
"access_token": ACCESS_TOKEN,
}
creative = call_graph_api(url, params)["creative"]
saved = False
if "video_id" in creative:
# download video
video_id = creative["video_id"]
video_url = f"{video_id}"
video_params = {
"fields": "source",
"access_token": ACCESS_TOKEN,
}
video_source = call_graph_api(video_url, video_params)["source"]
ext = video_source.split("?")[0].split(".")[-1]
if len(ext) > 4:
ext = "mp4"
saved = save_image_from_url(video_source, os.path.join("assets", f'{ad_id}.{ext}'))
split_video_in_frames(os.path.join("assets", f'{ad_id}.{ext}'))
elif "image_url" in creative:
image_url = creative["image_url"]
ext = image_url.split("?")[0].split(".")[-1]
if len(ext) > 4:
ext = "png"
saved = save_image_from_url(image_url, os.path.join("assets", f'{ad_id}.{ext}'))
elif "effective_object_story_id" in creative:
object_story_url = creative["effective_object_story_id"]
object_story_params = {
"fields": "attachments",
"access_token": ACCESS_TOKEN,
}
attachments = call_graph_api(object_story_url, object_story_params)["attachments"]
if "media" in attachments:
media = attachments["media"]
if "source" in media or "video" in media:
video_url = media["video"]["source"]
ext = video_url.split("?")[0].split(".")[-1]
if len(ext) > 4:
ext = "png"
saved = save_image_from_url(video_url, os.path.join("assets", f'{ad_id}.{ext}'))
split_video_in_frames(os.path.join("assets", f'{ad_id}.{ext}'))
elif "image" in media:
image_url = media["image"]["src"]
ext = image_url.split("?")[0].split(".")[-1]
if len(ext) > 4:
ext = "mp4"
saved = save_image_from_url(image_url, os.path.join("assets", f'{ad_id}.{ext}'))
if not saved:
creative_url = f'{creative["id"]}'
creative_params = {
"fields": "thumbnail_url",
"access_token": ACCESS_TOKEN,
"thumbnail_width": 512,
"thumbnail_height": 512,
}
thumbnail_url = call_graph_api(creative_url, creative_params)["thumbnail_url"]
ext = thumbnail_url.split("?")[0].split(".")[-1]
if len(ext) > 4:
ext = "jpg"
saved = save_image_from_url(thumbnail_url, os.path.join("assets", f'{ad_id}.{ext}'))
def call_graph_api(url, params):
base_url = "https://graph.facebook.com/v19.0/"
response = requests.get(base_url + url, params=params)
return json.loads(response.text)
def top_n_ads(df, n=5):
ad_ids = df.head(n)["ad_id"].values
image_paths = []
for ad_id in ad_ids:
if os.path.exists(f'assets/{ad_id}.png'):
image_paths.append(f'assets/{ad_id}.png')
elif os.path.exists(f'assets/{ad_id}.mp4'):
image_paths.append(f'assets/{ad_id}_first.jpg')
elif os.path.exists(f'assets/{ad_id}.jpg'):
image_paths.append(f'assets/{ad_id}.jpg')
return image_paths
def video_dropoff_analysis(df):
if "video_play_actions" not in df.columns:
return "There is not enough data to generate insights about video dropoff."
df_general = df.groupby(["ad_id"]).sum()
df_general = df_general.reset_index()
df_general = df_general[df_general["video_play_actions"] > 0]
if df_general.shape[0] < 2:
return "There is not enough data to generate insights about video dropoff."
df_general["p100"] = df_general["video_p100_watched_actions"] / df_general["video_play_actions"]
df_general = df_general.sort_values("p100", ascending=False)
image_paths = top_n_ads(df_general)
image_paths = [path for path in image_paths if path.endswith(".mp4")]
response = call_gpt_vision(client, image_paths, f"You are given a set of the most performative videos. Your task is to evaluate and anylise these videos, getting features like type of shoot, lightinig, colors, motion, etc, and generate a paragraph explaning what makes a good video. I will also provide a list of video plays in different stages of the video. The main idea is to understand what makes people spend more time on the video. Please, try to be technical and generate insights that can be use to future videos. Dropoff stages: 25%, 50%, 75%, 100%. Dataset: {df.head(5)}")
return response.choices[0].message.content
def performance_analysis(df, objective):
# - TS to CTR ratio analysis
# - Video drop off analysis
if ANALYSIS_TYPE[objective] == "ROAS":
df_general = df.groupby(["ad_id"]).sum()
df_general = df_general.reset_index()
df_general["relative_roas"] = df_general["purchase_roas"] / df_general["spend"]
df_general = df_general.sort_values("relative_roas", ascending=False)
image_paths = top_n_ads(df_general)
response = call_gpt_vision(client, image_paths, "You are a marketing analyst and your task is to find common features between the most performatives ads of the company. You are given the top 5 most perfomative ads, and we expect you to return 5 keywords and its explanation that defines what makes a good ad that show an excellent ROAS. Return it as a list of 5 concepts and its explanation, using the provided ads as example. Try to use nice categories to describe the features (you can use some names like `minimalist design`, `Clear message`, etc). Also, pay attention if the ads are mostly images or videos, this is important to say. The output MUST contain one concept per line. For each like, follow the structure: <concept>:<explanation>.")
image_winner_concepts = parse_tags_from_content(response)
response = call_gpt_vision(client, [], f"Following, you have the key features that makes an ad a performative ad. Your task is to group this information and summarize in a nice paragraph that will be presented to the marketing team. Be concise. Features:\n{image_winner_concepts}")
insights = response.choices[0].message.content
general_output = {"keywords": [concept["name"] for concept in image_winner_concepts], "insights": insights}
# Groupby ad_id and gender
df_male = df[df["gender"] == "male"].groupby(["ad_id"]).sum()
df_male = df_male.reset_index()
df_male["relative_roas"] = df_male["purchase_roas"] / df_male["spend"]
df_male = df_male.sort_values("relative_roas", ascending=False)
image_paths = top_n_ads(df_male)
response = call_gpt_vision(client, image_paths, "You are a marketing analyst and your task is to find common features between the most performatives ads published to men. You are given the top 5 most perfomative ads, and we expect you to return 5 keywords and its explanation that defines what makes a good ad that show an excellent ROAS. Return it as a list of 5 concepts and its explanation, using the provided ads as example. Try to use nice categories to describe the features (you can use some names like `minimalist design`, `Clear message`, etc). Also, pay attention if the ads are mostly images or videos, this is important to say. The output MUST contain one concept per line. For each like, follow the structure: <concept>:<explanation>.")
image_winner_concepts = parse_tags_from_content(response)
response = call_gpt_vision(client, [], f"Following, you have the key features that makes an ad a performative ad. Your task is to group this information and summarize in a nice paragraph that will be presented to the marketing team. Be concise. Features:\n{image_winner_concepts}")
insights = response.choices[0].message.content
male_output = {"keywords": [concept["name"] for concept in image_winner_concepts], "insights": insights}
df_female = df[df["gender"] == "female"].groupby(["ad_id"]).sum()
df_female = df_female.reset_index()
df_female["relative_roas"] = df_female["purchase_roas"] / df_female["spend"]
df_female = df_female.sort_values("relative_roas", ascending=False)
image_paths = top_n_ads(df_female)
response = call_gpt_vision(client, image_paths, "You are a marketing analyst and your task is to find common features between the most performatives ads published to women. You are given the top 5 most perfomative ads, and we expect you to return 5 keywords and its explanation that defines what makes a good ad that show an excellent ROAS. Return it as a list of 5 concepts and its explanation, using the provided ads as example. Try to use nice categories to describe the features (you can use some names like `minimalist design`, `Clear message`, etc). Also, pay attention if the ads are mostly images or videos, this is important to say. The output MUST contain one concept per line. For each like, follow the structure: <concept>:<explanation>.")
image_winner_concepts = parse_tags_from_content(response)
response = call_gpt_vision(client, [], f"Following, you have the key features that makes an ad a performative ad. Your task is to group this information and summarize in a nice paragraph that will be presented to the marketing team. Be concise. Features:\n{image_winner_concepts}")
insights = response.choices[0].message.content
female_output = {"keywords": [concept["name"] for concept in image_winner_concepts], "insights": insights}
return {
"General": general_output,
"Male": male_output,
"Female": female_output,
}
elif ANALYSIS_TYPE[objective] == "ENGAGEMENT":
df_general = df.groupby(["ad_id"]).sum()
df_general = df_general.reset_index()
df_general = df_general.sort_values("cost_per_engagement", ascending=True)
image_paths = top_n_ads(df_general)
response = call_gpt_vision(client, image_paths, "You are a marketing analyst and your task is to find common features between the ads that presented more engagement. You are given the top 5 most perfomative ads, and we expect you to return 5 keywords and its explanation that defines what makes a good ad that show an excellent engagement. Return it as a list of 5 concepts and its explanation, using the provided ads as example. Try to use nice categories to describe the features (you can use some names like `minimalist design`, `Clear message`, etc). Also, pay attention if the ads are mostly images or videos, this is important to say. The output MUST contain one concept per line. For each like, follow the structure: <concept>:<explanation>.")
image_winner_concepts = parse_tags_from_content(response)
response = call_gpt_vision(client, [], f"Following, you have the key features that makes an ad a performative ad. Your task is to group this information and summarize in a nice paragraph that will be presented to the marketing team. Be concise. Features:\n{image_winner_concepts}")
insights = response.choices[0].message.content
general_output = {"keywords": [concept["name"] for concept in image_winner_concepts], "insights": insights}
# Groupby ad_id and gender
df_male = df[df["gender"] == "male"].groupby(["ad_id"]).sum()
df_male = df_male.reset_index()
df_male = df_male.sort_values("cost_per_engagement", ascending=True)
image_paths = top_n_ads(df_male)
response = call_gpt_vision(client, image_paths, "You are a marketing analyst and your task is to find common features between the ads that presented more engagement from men. You are given the top 5 most perfomative ads, and we expect you to return 5 keywords and its explanation that defines what makes a good ad that show an excellent engagement. Return it as a list of 5 concepts and its explanation, using the provided ads as example. Try to use nice categories to describe the features (you can use some names like `minimalist design`, `Clear message`, etc). Also, pay attention if the ads are mostly images or videos, this is important to say. The output MUST contain one concept per line. For each like, follow the structure: <concept>:<explanation>.")
image_winner_concepts = parse_tags_from_content(response)
response = call_gpt_vision(client, [], f"Following, you have the key features that makes an ad a performative ad. Your task is to group this information and summarize in a nice paragraph that will be presented to the marketing team. Be concise. Features:\n{image_winner_concepts}")
insights = response.choices[0].message.content
male_output = {"keywords": [concept["name"] for concept in image_winner_concepts], "insights": insights}
df_female = df[df["gender"] == "female"].groupby(["ad_id"]).sum()
df_female = df_female.reset_index()
df_female = df_female.sort_values("cost_per_engagement", ascending=True)
image_paths = top_n_ads(df_female)
response = call_gpt_vision(client, image_paths, "You are a marketing analyst and your task is to find common features between the ads that presented more engagement from women. You are given the top 5 most perfomative ads, and we expect you to return 5 keywords and its explanation that defines what makes a good ad that show an excellent engagement. Return it as a list of 5 concepts and its explanation, using the provided ads as example. Try to use nice categories to describe the features (you can use some names like `minimalist design`, `Clear message`, etc). Also, pay attention if the ads are mostly images or videos, this is important to say. The output MUST contain one concept per line. For each like, follow the structure: <concept>:<explanation>.")
image_winner_concepts = parse_tags_from_content(response)
response = call_gpt_vision(client, [], f"Following, you have the key features that makes an ad a performative ad. Your task is to group this information and summarize in a nice paragraph that will be presented to the marketing team. Be concise. Features:\n{image_winner_concepts}")
insights = response.choices[0].message.content
female_output = {"keywords": [concept["name"] for concept in image_winner_concepts], "insights": insights}
return {
"General": general_output,
"Male": male_output,
"Female": female_output,
}
def format_adsets(campaign_id):
st_campaigns.empty()
adsets = get_adsets(campaign_id)
with st_adsets.container():
st.title("Adsets")
for adset in adsets["data"]:
with st.popover(adset["adset_name"]):
st.markdown("**Impressions**: " + str(adset["impressions"]))
st.markdown("**Total Spend**: US$" + str(adset["spend"]))
st.button(
"View Ads",
key=adset["adset_name"],
on_click=format_ads,
kwargs={"adset_id": adset["adset_id"]},
)
def format_ads(adset_id):
st_adsets.empty()
BIG_DATASET = None
ads = get_ads(adset_id)
df_ads = pd.DataFrame(ads["data"])
options = ["gender"] #st.multiselect(
# "Which breakdowns do you want to see?", ["gender", "age"], ["gender"]
# )
df_ads["spend"] = df_ads["spend"].astype(float)
df_ads["impressions"] = df_ads["impressions"].astype(float)
video_cols = ["video_play_actions","video_p25_watched_actions","video_p50_watched_actions","video_p75_watched_actions","video_p100_watched_actions"]
for col in video_cols:
if col in df_ads.columns:
df_ads[col] = df_ads[col].apply(lambda x: float(x[0].get("value", 0)) if isinstance(x, list) else 0)
objective = df_ads["objective"].values[0]
def get_engagement(row):
if isinstance(row, list):
for ac in row:
if ac["action_type"] == "post_engagement":
return float(ac["value"])
return 0
if "cost_per_action_type" in df_ads.columns:
df_ads["cost_per_engagement"] = df_ads["cost_per_action_type"].apply(get_engagement)
df_ads = df_ads.sort_values("cost_per_engagement", ascending=True)
if "purchase_roas" in df_ads.columns:
df_ads["purchase_roas"] = df_ads["purchase_roas"].apply(lambda x: float(x[0].get("value", 0)) if isinstance(x, list) else 0)
df_ads["r_purchase_roas"] = df_ads["purchase_roas"] / df_ads["spend"]
df_ads = df_ads.sort_values("r_purchase_roas", ascending=False)
if BIG_DATASET is None:
BIG_DATASET = df_ads
else:
BIG_DATASET = pd.concat([BIG_DATASET, df_ads])
with st_ads.container():
st.title("Ads")
with st.expander("See analysis", expanded=False):
analysis = st.empty()
for i, ad in enumerate(df_ads["ad_id"].unique()):
get_creative_assets(ad)
ad_name = df_ads[df_ads["ad_id"] == ad]["ad_name"].values[0]
if i < 3:
addon = "🏆"
else:
addon = ""
with st.popover(f"{addon} {ad_name}"):
tab1, tab2, tab3 = st.tabs(["Creative", "Analytics", "Video Analysis"])
df_tmp = df_ads[df_ads["ad_id"] == ad]
with tab2:
if len(options) >= 1:
label = ["Total impressions"]
source = []
target = []
value = []
for option in options:
df_g_tmp = df_tmp.groupby(option).sum()
df_g_tmp = df_g_tmp.reset_index()
for imp, v in df_g_tmp[["impressions", option]].values:
label.append(v)
source.append(0)
target.append(len(label) - 1)
value.append(imp)
fig = go.Figure(
data=[
go.Sankey(
node=dict(
pad=15,
thickness=20,
line=dict(color="black", width=0.5),
label=label,
color="blue",
),
link=dict(
source=source, target=target, value=value
),
)
]
)
fig.update_layout(title_text="Basic Sankey Diagram", font_size=10)
st.plotly_chart(fig, use_container_width=True)
if "purchase_roas" in df_tmp.columns:
df_roas = df_tmp.groupby(options)[["spend","purchase_roas"]].sum().reset_index().sort_values("purchase_roas", ascending=False)
values = [str(v) for v in df_tmp[options].values]
fig = go.Figure(data=[
go.Bar(name='ROAS', x=values, y=df_roas["purchase_roas"]),
go.Bar(name='Spend', x=values, y=df_roas["spend"])
])
# Change the bar mode
fig.update_layout(barmode='group')
st.plotly_chart(fig, use_container_width=True)
with tab3:
if "video_play_actions" in df_tmp.columns:
values = df_ads[["ad_id","video_play_actions","video_p25_watched_actions","video_p50_watched_actions","video_p75_watched_actions","video_p100_watched_actions"]].groupby("ad_id").get_group(ad).sum().values[1:]
labels = ["Total video plays","Video plays until 25%","Video plays until 50%","Video plays until 75%","Video plays until 100%"]
if values[0] > 0:
st.plotly_chart(create_video_plays_funnel(values, labels), use_container_width=True)
with tab1:
if os.path.exists(f'assets/{ad}.png'):
st.image(f'assets/{ad}.png', caption='Creative', use_column_width=True)
elif os.path.exists(f'assets/{ad}.mp4'):
st.video(f'assets/{ad}.mp4')
elif os.path.exists(f'assets/{ad}.jpg'):
st.image(f'assets/{ad}.jpg', caption='Creative', use_column_width=True)
with analysis.container():
v_d, p_a = st.tabs(["Video Dropoff", "Performance Analysis"])
with p_a:
if not os.path.exists(f"{adset_id}_performance.json"):
report = performance_analysis(df_ads, objective)
json.dump(report, open(f"{adset_id}_performance.json", "w"))
else:
report = json.load(open(f"{adset_id}_performance.json", "r"))
tabs = st.tabs(report.keys())
tabs_names = list(report.keys())
for i, tab in enumerate(tabs):
with tab:
st.multiselect("", report[tabs_names[i]]["keywords"], report[tabs_names[i]]["keywords"], key=f"{ad}_{i}")
st.write(report[tabs_names[i]]["insights"])
with v_d:
if not os.path.exists(f"{adset_id}_video_dropoff.json"):
report = video_dropoff_analysis(df_ads)
json.dump(report, open(f"{adset_id}_video_dropoff.json", "w"))
else:
report = json.load(open(f"{adset_id}_video_dropoff.json", "r"))
st.write(report)
def create_video_plays_funnel(funnel_data, funnel_title):
fig = go.Figure(go.Funnel(
y = funnel_title,
x = funnel_data))
return fig
if "initiated" not in st.session_state:
st.session_state["initiated"] = False
if not st.session_state["initiated"]:
st_campaigns = st.empty()
st_adsets = st.empty()
st_ads = st.empty()
st.session_state["initiated"] = True
with st_campaigns.container():
st.title("Campaigns")
for c in (get_campaigns(ACCOUNT_ID))["data"]:
with st.popover(c["campaign_name"]):
st.markdown("**Impressions**: " + str(c["impressions"]))
st.markdown("**Total Spend**: US$" + str(c["spend"]))
st.markdown("**Objective**: " + str(c["objective"]))
st.button(
"View Adsets",
key=c["campaign_name"],
on_click=format_adsets,
kwargs={"campaign_id": c["campaign_id"]},
)
|