File size: 28,326 Bytes
92562ce
98eb3dc
 
92562ce
98eb3dc
 
 
 
 
 
 
 
 
 
 
0ee5994
 
98eb3dc
 
 
 
 
 
 
 
 
c74c3b3
 
98eb3dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74c3b3
98eb3dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74c3b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98eb3dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74c3b3
98eb3dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74c3b3
98eb3dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74c3b3
98eb3dc
 
 
 
c74c3b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98eb3dc
c74c3b3
98eb3dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74c3b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98eb3dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74c3b3
 
 
 
 
 
 
 
 
 
 
98eb3dc
 
 
c74c3b3
 
98eb3dc
 
 
 
 
 
c74c3b3
98eb3dc
 
 
 
 
 
c74c3b3
 
 
 
 
98eb3dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74c3b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98eb3dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c74c3b3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import streamlit as st
import numpy as np
import plotly.figure_factory as ff

import plotly.graph_objects as go
import plotly.express as px


import requests
import json
import pandas as pd
import shutil
import os
from openai import AzureOpenAI
import base64
import cv2
from PIL import Image

ACCOUNT_ID = "act_416207949073936"
PAGE_ID = "63257509478"
OPENAI_API = os.getenv("OPENAI_API")
ACCESS_TOKEN = os.getenv("ACCESS_TOKEN")
BIG_DATASET = None

ANALYSIS_TYPE = {
    "OUTCOME_SALES": "ROAS",
    "OUTCOME_AWARENESS": "ENGAGEMENT",
    "OUTCOME_LEADS": "ENGAGEMENT"
}

API_BASE = 'https://bestever-vision.openai.azure.com/'
DEPLOYMENT_NAME = 'vision'
API_VERSION = '2023-12-01-preview' # this might change in the future
API_URL = f"{API_BASE}openai/deployments/{DEPLOYMENT_NAME}/extensions"

client = AzureOpenAI(
    api_key=OPENAI_API,
    api_version=API_VERSION,
    base_url=API_URL,
)

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')


def call_gpt_vision(client, images_path, user_prompt):
    """Call the GPT4 Vision API to generate tags."""
    images_content = [
        {
            "type": "image_url",
            "image_url": {
                "url": f"data:image/jpeg;base64,{encode_image(image_path)}",
            },
        }
        for image_path in images_path
    ]
    user_content = [
        {"type": "text", "text": user_prompt},
    ]
    user_content += images_content
    response = client.chat.completions.create(
        model=DEPLOYMENT_NAME,
        messages=[
            {"role": "user", "content": user_content},
        ],
        max_tokens=2000,
    )
    return response


def parse_tags_from_content(response):
    """Parse the tags from the response."""
    tags = []
    content = response.choices[0].message.content
    for full_tag in content.split("\n"):
        splitted_fields = full_tag.split(":")
        if len(splitted_fields) < 2:
            continue
        tag_name = splitted_fields[0]
        tag_details = ":".join(splitted_fields[1:])
        tag_element = {"name": tag_name, "metadata": {"details": tag_details}}
        tags.append(tag_element)
    return tags


def get_campaigns(account_id):
    url = f"{account_id}/insights"
    params = {
        "date_preset": "last_90d",
        "fields": "campaign_id,campaign_name,impressions,spend,objective",
        "level": "campaign",
        "access_token": ACCESS_TOKEN,
    }
    return call_graph_api(url, params)


def get_adsets(campaign_id):
    url = f"{campaign_id}/insights"
    params = {
        "date_preset": "last_90d",
        "fields": "adset_id,adset_name,impressions,spend",
        "level": "adset",
        "access_token": ACCESS_TOKEN,
    }
    return call_graph_api(url, params)


def get_ads(adset_id):
    url = f"{adset_id}/insights"
    params = {
        "date_preset": "last_90d",
        "fields": "ad_name,ad_id,impressions,spend,video_play_actions,video_p25_watched_actions,video_p50_watched_actions,video_p75_watched_actions,video_p100_watched_actions,video_play_curve_actions,purchase_roas,cost_per_action_type,objective",
        "breakdowns": "age,gender",
        "limit": 1000,
        "level": "ad",
        "access_token": ACCESS_TOKEN,
    }
    return call_graph_api(url, params)


def save_image_from_url(url, filename):
    res = requests.get(url, stream = True)

    if res.status_code == 200:
        with open(filename,'wb') as f:
            shutil.copyfileobj(res.raw, f)
        return True
    return False


def extract_specific_frame(video_path, frame_position, output_image):
    # Open the video file
    cap = cv2.VideoCapture(video_path)

    if not cap.isOpened():
        print("Error opening video file")
        return

    # Get the total number of frames
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

    # Calculate the frame index based on the position
    if frame_position == 'middle':
        frame_index = total_frames // 2
    elif frame_position == 'last':
        frame_index = total_frames - 1
    else:  # 'first' or any other input defaults to the first frame
        frame_index = 0

    # Set the current frame position
    cap.set(cv2.CAP_PROP_POS_FRAMES, frame_index)

    # Read the frame
    ret, frame = cap.read()
    if ret:
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        frame = Image.fromarray(frame)
        frame.save(output_image, "JPEG")
    else:
        print(f"Error reading the {frame_position} frame")

    # Release the video capture object
    cap.release()

def split_video_in_frames(video_path):
    output_path = video_path.split(".")[0]
    extract_specific_frame(video_path, 'first', output_path + "_first.jpg")
    extract_specific_frame(video_path, 'middle', output_path + "_middle.jpg")
    extract_specific_frame(video_path, 'last', output_path + "_last.jpg")    


def get_creative_assets(ad_id):
    # checking if the asset already exists
    if os.path.exists(f'assets/{ad_id}.png') or os.path.exists(f'assets/{ad_id}.mp4') or os.path.exists(f'assets/{ad_id}.jpg'):
        return
    url = f"{ad_id}"
    params = {
        "fields": "creative{video_id,id,effective_object_story_id,image_url}",
        "access_token": ACCESS_TOKEN,
    }
    creative = call_graph_api(url, params)["creative"]
    saved = False
    if "video_id" in creative:
        # download video
        video_id = creative["video_id"]
        video_url = f"{video_id}"
        video_params = {
            "fields": "source",
            "access_token": ACCESS_TOKEN,
        }
        video_source = call_graph_api(video_url, video_params)["source"]
        ext = video_source.split("?")[0].split(".")[-1]
        if len(ext) > 4:
            ext = "mp4"
        saved = save_image_from_url(video_source, os.path.join("assets", f'{ad_id}.{ext}'))
        split_video_in_frames(os.path.join("assets", f'{ad_id}.{ext}'))

    elif "image_url" in creative:
        image_url = creative["image_url"]
        ext = image_url.split("?")[0].split(".")[-1]
        if len(ext) > 4:
            ext = "png"
        saved = save_image_from_url(image_url, os.path.join("assets", f'{ad_id}.{ext}'))
    
    elif "effective_object_story_id" in creative:
        object_story_url = creative["effective_object_story_id"]
        object_story_params = {
            "fields": "attachments",
            "access_token": ACCESS_TOKEN,
        }
        attachments = call_graph_api(object_story_url, object_story_params)["attachments"]
        if "media" in attachments:
            media = attachments["media"]
            if "source" in media or "video" in media:
                video_url = media["video"]["source"]
                ext = video_url.split("?")[0].split(".")[-1]
                if len(ext) > 4:
                    ext = "png"
                saved = save_image_from_url(video_url, os.path.join("assets", f'{ad_id}.{ext}'))
                split_video_in_frames(os.path.join("assets", f'{ad_id}.{ext}'))
            elif "image" in media:
                image_url = media["image"]["src"]
                ext = image_url.split("?")[0].split(".")[-1]
                if len(ext) > 4:
                    ext = "mp4"
                saved = save_image_from_url(image_url, os.path.join("assets", f'{ad_id}.{ext}'))

    if not saved:
        creative_url = f'{creative["id"]}'
        creative_params = {
            "fields": "thumbnail_url",
            "access_token": ACCESS_TOKEN,
            "thumbnail_width": 512,
            "thumbnail_height": 512,
        }
        thumbnail_url = call_graph_api(creative_url, creative_params)["thumbnail_url"]
        ext = thumbnail_url.split("?")[0].split(".")[-1]
        if len(ext) > 4:
            ext = "jpg"
        saved = save_image_from_url(thumbnail_url, os.path.join("assets", f'{ad_id}.{ext}'))

def call_graph_api(url, params):
    base_url = "https://graph.facebook.com/v19.0/"
    response = requests.get(base_url + url, params=params)
    return json.loads(response.text)


def top_n_ads(df, n=5):
    ad_ids = df.head(n)["ad_id"].values
    image_paths = []
    for ad_id in ad_ids:
        if os.path.exists(f'assets/{ad_id}.png'):
            image_paths.append(f'assets/{ad_id}.png')
        elif os.path.exists(f'assets/{ad_id}.mp4'):
            image_paths.append(f'assets/{ad_id}_first.jpg')
        elif os.path.exists(f'assets/{ad_id}.jpg'):
            image_paths.append(f'assets/{ad_id}.jpg')
    return image_paths

def video_dropoff_analysis(df):
    if "video_play_actions" not in df.columns:
        return "There is not enough data to generate insights about video dropoff."
    
    df_general = df.groupby(["ad_id"]).sum()
    df_general = df_general.reset_index()
    df_general = df_general[df_general["video_play_actions"] > 0]

    if df_general.shape[0] < 2:
        return "There is not enough data to generate insights about video dropoff."

    df_general["p100"] = df_general["video_p100_watched_actions"] / df_general["video_play_actions"]
    df_general = df_general.sort_values("p100", ascending=False)
    image_paths = top_n_ads(df_general)
    image_paths = [path for path in image_paths if path.endswith(".mp4")]

    response = call_gpt_vision(client, image_paths, f"You are given a set of the most performative videos. Your task is to evaluate and anylise these videos, getting features like type of shoot, lightinig, colors, motion, etc, and generate a paragraph explaning what makes a good video. I will also provide a list of video plays in different stages of the video. The main idea is to understand what makes people spend more time on the video. Please, try to be technical and generate insights that can be use to future videos. Dropoff stages: 25%, 50%, 75%, 100%. Dataset: {df.head(5)}")
    return response.choices[0].message.content

def performance_analysis(df, objective):
    # - TS to CTR ratio analysis
    # - Video drop off analysis
    if ANALYSIS_TYPE[objective] == "ROAS":
        df_general = df.groupby(["ad_id"]).sum()
        df_general = df_general.reset_index()
        df_general["relative_roas"] = df_general["purchase_roas"] / df_general["spend"]
        df_general = df_general.sort_values("relative_roas", ascending=False)
        
        image_paths = top_n_ads(df_general)
        response = call_gpt_vision(client, image_paths, "You are a marketing analyst and your task is to find common features between the most performatives ads of the company. You are given the top 5 most perfomative ads, and we expect you to return 5 keywords and its explanation that defines what makes a good ad that show an excellent ROAS. Return it as a list of 5 concepts and its explanation, using the provided ads as example. Try to use nice categories to describe the features (you can use some names like `minimalist design`, `Clear message`, etc). Also, pay attention if the ads are mostly images or videos, this is important to say. The output MUST contain one concept per line. For each like, follow the structure: <concept>:<explanation>.")
        image_winner_concepts = parse_tags_from_content(response)

        response = call_gpt_vision(client, [], f"Following, you have the key features that makes an ad a performative ad. Your task is to group this information and summarize in a nice paragraph that will be presented to the marketing team. Be concise. Features:\n{image_winner_concepts}")
        insights = response.choices[0].message.content

        general_output = {"keywords": [concept["name"] for concept in image_winner_concepts], "insights": insights}

        # Groupby ad_id and gender
        df_male = df[df["gender"] == "male"].groupby(["ad_id"]).sum()
        df_male = df_male.reset_index()
        df_male["relative_roas"] = df_male["purchase_roas"] / df_male["spend"]
        df_male = df_male.sort_values("relative_roas", ascending=False)
        
        image_paths = top_n_ads(df_male)
        response = call_gpt_vision(client, image_paths, "You are a marketing analyst and your task is to find common features between the most performatives ads published to men. You are given the top 5 most perfomative ads, and we expect you to return 5 keywords and its explanation that defines what makes a good ad that show an excellent ROAS. Return it as a list of 5 concepts and its explanation, using the provided ads as example. Try to use nice categories to describe the features (you can use some names like `minimalist design`, `Clear message`, etc). Also, pay attention if the ads are mostly images or videos, this is important to say. The output MUST contain one concept per line. For each like, follow the structure: <concept>:<explanation>.")
        image_winner_concepts = parse_tags_from_content(response)

        response = call_gpt_vision(client, [], f"Following, you have the key features that makes an ad a performative ad. Your task is to group this information and summarize in a nice paragraph that will be presented to the marketing team. Be concise. Features:\n{image_winner_concepts}")
        insights = response.choices[0].message.content

        male_output = {"keywords": [concept["name"] for concept in image_winner_concepts], "insights": insights}


        df_female = df[df["gender"] == "female"].groupby(["ad_id"]).sum()
        df_female = df_female.reset_index()
        df_female["relative_roas"] = df_female["purchase_roas"] / df_female["spend"]
        df_female = df_female.sort_values("relative_roas", ascending=False)
        
        image_paths = top_n_ads(df_female)
        response = call_gpt_vision(client, image_paths, "You are a marketing analyst and your task is to find common features between the most performatives ads published to women. You are given the top 5 most perfomative ads, and we expect you to return 5 keywords and its explanation that defines what makes a good ad that show an excellent ROAS. Return it as a list of 5 concepts and its explanation, using the provided ads as example. Try to use nice categories to describe the features (you can use some names like `minimalist design`, `Clear message`, etc). Also, pay attention if the ads are mostly images or videos, this is important to say. The output MUST contain one concept per line. For each like, follow the structure: <concept>:<explanation>.")
        image_winner_concepts = parse_tags_from_content(response)

        response = call_gpt_vision(client, [], f"Following, you have the key features that makes an ad a performative ad. Your task is to group this information and summarize in a nice paragraph that will be presented to the marketing team. Be concise. Features:\n{image_winner_concepts}")
        insights = response.choices[0].message.content
        female_output = {"keywords": [concept["name"] for concept in image_winner_concepts], "insights": insights}

        return {
            "General": general_output,
            "Male":  male_output,
            "Female": female_output,
        }

    elif ANALYSIS_TYPE[objective] == "ENGAGEMENT":
        df_general = df.groupby(["ad_id"]).sum()
        df_general = df_general.reset_index()
        df_general = df_general.sort_values("cost_per_engagement", ascending=True)
        
        image_paths = top_n_ads(df_general)
        response = call_gpt_vision(client, image_paths, "You are a marketing analyst and your task is to find common features between the ads that presented more engagement. You are given the top 5 most perfomative ads, and we expect you to return 5 keywords and its explanation that defines what makes a good ad that show an excellent engagement. Return it as a list of 5 concepts and its explanation, using the provided ads as example. Try to use nice categories to describe the features (you can use some names like `minimalist design`, `Clear message`, etc). Also, pay attention if the ads are mostly images or videos, this is important to say. The output MUST contain one concept per line. For each like, follow the structure: <concept>:<explanation>.")
        image_winner_concepts = parse_tags_from_content(response)

        response = call_gpt_vision(client, [], f"Following, you have the key features that makes an ad a performative ad. Your task is to group this information and summarize in a nice paragraph that will be presented to the marketing team. Be concise. Features:\n{image_winner_concepts}")
        insights = response.choices[0].message.content

        general_output = {"keywords": [concept["name"] for concept in image_winner_concepts], "insights": insights}

        # Groupby ad_id and gender
        df_male = df[df["gender"] == "male"].groupby(["ad_id"]).sum()
        df_male = df_male.reset_index()
        df_male = df_male.sort_values("cost_per_engagement", ascending=True)
        
        image_paths = top_n_ads(df_male)
        response = call_gpt_vision(client, image_paths, "You are a marketing analyst and your task is to find common features between the ads that presented more engagement from men. You are given the top 5 most perfomative ads, and we expect you to return 5 keywords and its explanation that defines what makes a good ad that show an excellent engagement. Return it as a list of 5 concepts and its explanation, using the provided ads as example. Try to use nice categories to describe the features (you can use some names like `minimalist design`, `Clear message`, etc). Also, pay attention if the ads are mostly images or videos, this is important to say. The output MUST contain one concept per line. For each like, follow the structure: <concept>:<explanation>.")
        image_winner_concepts = parse_tags_from_content(response)

        response = call_gpt_vision(client, [], f"Following, you have the key features that makes an ad a performative ad. Your task is to group this information and summarize in a nice paragraph that will be presented to the marketing team. Be concise. Features:\n{image_winner_concepts}")
        insights = response.choices[0].message.content

        male_output = {"keywords": [concept["name"] for concept in image_winner_concepts], "insights": insights}


        df_female = df[df["gender"] == "female"].groupby(["ad_id"]).sum()
        df_female = df_female.reset_index()
        df_female = df_female.sort_values("cost_per_engagement", ascending=True)
        
        image_paths = top_n_ads(df_female)
        response = call_gpt_vision(client, image_paths, "You are a marketing analyst and your task is to find common features between the ads that presented more engagement from women. You are given the top 5 most perfomative ads, and we expect you to return 5 keywords and its explanation that defines what makes a good ad that show an excellent engagement. Return it as a list of 5 concepts and its explanation, using the provided ads as example. Try to use nice categories to describe the features (you can use some names like `minimalist design`, `Clear message`, etc). Also, pay attention if the ads are mostly images or videos, this is important to say. The output MUST contain one concept per line. For each like, follow the structure: <concept>:<explanation>.")
        image_winner_concepts = parse_tags_from_content(response)

        response = call_gpt_vision(client, [], f"Following, you have the key features that makes an ad a performative ad. Your task is to group this information and summarize in a nice paragraph that will be presented to the marketing team. Be concise. Features:\n{image_winner_concepts}")
        insights = response.choices[0].message.content
        female_output = {"keywords": [concept["name"] for concept in image_winner_concepts], "insights": insights}

        return {
            "General": general_output,
            "Male":  male_output,
            "Female": female_output,
        }

def format_adsets(campaign_id):
    st_campaigns.empty()
    adsets = get_adsets(campaign_id)
    with st_adsets.container():
        st.title("Adsets")
        for adset in adsets["data"]:
            with st.popover(adset["adset_name"]):
                st.markdown("**Impressions**: " + str(adset["impressions"]))
                st.markdown("**Total Spend**: US$" + str(adset["spend"]))
                st.button(
                    "View Ads",
                    key=adset["adset_name"],
                    on_click=format_ads,
                    kwargs={"adset_id": adset["adset_id"]},
                )


def format_ads(adset_id):
    st_adsets.empty()
    BIG_DATASET = None
    ads = get_ads(adset_id)
    df_ads = pd.DataFrame(ads["data"])
    options = ["gender"] #st.multiselect(
    #     "Which breakdowns do you want to see?", ["gender", "age"], ["gender"]
    # )
    df_ads["spend"] = df_ads["spend"].astype(float)
    df_ads["impressions"] = df_ads["impressions"].astype(float)
    video_cols = ["video_play_actions","video_p25_watched_actions","video_p50_watched_actions","video_p75_watched_actions","video_p100_watched_actions"]
    for col in video_cols:
        if col in df_ads.columns:
            df_ads[col] = df_ads[col].apply(lambda x: float(x[0].get("value", 0)) if isinstance(x, list) else 0)

    objective = df_ads["objective"].values[0]
    def get_engagement(row):
        if isinstance(row, list):
            for ac in row:
                if ac["action_type"] == "post_engagement":
                    return float(ac["value"])
        return 0
    if "cost_per_action_type" in df_ads.columns:
        df_ads["cost_per_engagement"] = df_ads["cost_per_action_type"].apply(get_engagement)
        df_ads = df_ads.sort_values("cost_per_engagement", ascending=True)
    
    if "purchase_roas" in df_ads.columns:
        df_ads["purchase_roas"] = df_ads["purchase_roas"].apply(lambda x: float(x[0].get("value", 0)) if isinstance(x, list) else 0)
        df_ads["r_purchase_roas"] = df_ads["purchase_roas"] / df_ads["spend"]
        df_ads = df_ads.sort_values("r_purchase_roas", ascending=False)

    if BIG_DATASET is None:
        BIG_DATASET = df_ads
    else:
        BIG_DATASET = pd.concat([BIG_DATASET, df_ads])
    with st_ads.container():
        st.title("Ads")
        with st.expander("See analysis", expanded=False):
            analysis = st.empty()

        for i, ad in enumerate(df_ads["ad_id"].unique()):
            get_creative_assets(ad)
            ad_name = df_ads[df_ads["ad_id"] == ad]["ad_name"].values[0]
            if i < 3:
                addon = "🏆"
            else:
                addon = ""
            with st.popover(f"{addon} {ad_name}"):
                tab1, tab2, tab3 = st.tabs(["Creative", "Analytics", "Video Analysis"])
                df_tmp = df_ads[df_ads["ad_id"] == ad]
                with tab2:
                    if len(options) >= 1:
                        label = ["Total impressions"]
                        source = []
                        target = []
                        value = []
                        for option in options:
                            df_g_tmp = df_tmp.groupby(option).sum()
                            df_g_tmp = df_g_tmp.reset_index()
                            for imp, v in df_g_tmp[["impressions", option]].values:
                                label.append(v)
                                source.append(0)
                                target.append(len(label) - 1)
                                value.append(imp)

                        fig = go.Figure(
                            data=[
                                go.Sankey(
                                    node=dict(
                                        pad=15,
                                        thickness=20,
                                        line=dict(color="black", width=0.5),
                                        label=label,
                                        color="blue",
                                    ),
                                    link=dict(
                                        source=source, target=target, value=value
                                    ),
                                )
                            ]
                        )
                        fig.update_layout(title_text="Basic Sankey Diagram", font_size=10)
                        st.plotly_chart(fig, use_container_width=True)

                    if "purchase_roas" in df_tmp.columns:
                        df_roas = df_tmp.groupby(options)[["spend","purchase_roas"]].sum().reset_index().sort_values("purchase_roas", ascending=False)
                        values = [str(v) for v in df_tmp[options].values]
                        fig = go.Figure(data=[
                            go.Bar(name='ROAS', x=values, y=df_roas["purchase_roas"]),
                            go.Bar(name='Spend', x=values, y=df_roas["spend"])
                        ])
                        # Change the bar mode
                        fig.update_layout(barmode='group')
                        st.plotly_chart(fig, use_container_width=True)

                with tab3:
                    if "video_play_actions" in df_tmp.columns:
                        values = df_ads[["ad_id","video_play_actions","video_p25_watched_actions","video_p50_watched_actions","video_p75_watched_actions","video_p100_watched_actions"]].groupby("ad_id").get_group(ad).sum().values[1:]
                        labels = ["Total video plays","Video plays until 25%","Video plays until 50%","Video plays until 75%","Video plays until 100%"]
                        if values[0] > 0:
                            st.plotly_chart(create_video_plays_funnel(values, labels), use_container_width=True)
                with tab1:
                    if os.path.exists(f'assets/{ad}.png'):
                        st.image(f'assets/{ad}.png', caption='Creative', use_column_width=True)
                    elif os.path.exists(f'assets/{ad}.mp4'):
                        st.video(f'assets/{ad}.mp4')
                    elif os.path.exists(f'assets/{ad}.jpg'):
                        st.image(f'assets/{ad}.jpg', caption='Creative', use_column_width=True)
            
        with analysis.container():
            v_d, p_a = st.tabs(["Video Dropoff", "Performance Analysis"])
            with p_a:
                if not os.path.exists(f"{adset_id}_performance.json"):
                    report = performance_analysis(df_ads, objective)
                    json.dump(report, open(f"{adset_id}_performance.json", "w"))
                else:
                    report = json.load(open(f"{adset_id}_performance.json", "r"))
                tabs = st.tabs(report.keys())
                tabs_names = list(report.keys())
                for i, tab in enumerate(tabs):
                    with tab:
                        st.multiselect("", report[tabs_names[i]]["keywords"], report[tabs_names[i]]["keywords"], key=f"{ad}_{i}")
                        st.write(report[tabs_names[i]]["insights"])
            
            with v_d:
                if not os.path.exists(f"{adset_id}_video_dropoff.json"):
                    report = video_dropoff_analysis(df_ads)
                    json.dump(report, open(f"{adset_id}_video_dropoff.json", "w"))
                else:
                    report = json.load(open(f"{adset_id}_video_dropoff.json", "r"))
                st.write(report)

def create_video_plays_funnel(funnel_data, funnel_title):
    fig = go.Figure(go.Funnel(
    y = funnel_title,
    x = funnel_data))
    return fig

if "initiated" not in st.session_state:
    st.session_state["initiated"] = False

if not st.session_state["initiated"]:
    st_campaigns = st.empty()
    st_adsets = st.empty()
    st_ads = st.empty()
    st.session_state["initiated"] = True
    with st_campaigns.container():
        st.title("Campaigns")
        for c in (get_campaigns(ACCOUNT_ID))["data"]:
            with st.popover(c["campaign_name"]):
                st.markdown("**Impressions**: " + str(c["impressions"]))
                st.markdown("**Total Spend**: US$" + str(c["spend"]))
                st.markdown("**Objective**: " + str(c["objective"]))
                st.button(
                    "View Adsets",
                    key=c["campaign_name"],
                    on_click=format_adsets,
                    kwargs={"campaign_id": c["campaign_id"]},
                )