Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -10,6 +10,8 @@ import torch
|
|
10 |
|
11 |
app = FastAPI()
|
12 |
name = "microsoft/DialoGPT-small"
|
|
|
|
|
13 |
|
14 |
# microsoft/DialoGPT-small
|
15 |
# microsoft/DialoGPT-medium
|
@@ -37,7 +39,7 @@ def read_root(data: req):
|
|
37 |
print("Prompt:", data.prompt)
|
38 |
print("Length:", data.length)
|
39 |
|
40 |
-
if name == "microsoft/DialoGPT-small" or name == "microsoft/DialoGPT-medium" or name == "microsoft/DialoGPT-large":
|
41 |
# tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
|
42 |
# model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
|
43 |
|
@@ -58,16 +60,31 @@ def read_root(data: req):
|
|
58 |
|
59 |
return answer_data
|
60 |
else:
|
61 |
-
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
10 |
|
11 |
app = FastAPI()
|
12 |
name = "microsoft/DialoGPT-small"
|
13 |
+
customGen = False
|
14 |
+
gpt2based = False
|
15 |
|
16 |
# microsoft/DialoGPT-small
|
17 |
# microsoft/DialoGPT-medium
|
|
|
39 |
print("Prompt:", data.prompt)
|
40 |
print("Length:", data.length)
|
41 |
|
42 |
+
if (name == "microsoft/DialoGPT-small" or name == "microsoft/DialoGPT-medium" or name == "microsoft/DialoGPT-large") and customGen == True:
|
43 |
# tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
|
44 |
# model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-small")
|
45 |
|
|
|
60 |
|
61 |
return answer_data
|
62 |
else:
|
63 |
+
if gpt2based == True:
|
64 |
+
input_text = data.prompt
|
65 |
|
66 |
+
# Tokenize the input text
|
67 |
+
input_ids = gpt2tokenizer.encode(input_text, return_tensors="pt")
|
68 |
+
|
69 |
+
# Generate output using the model
|
70 |
+
output_ids = gpt2model.generate(input_ids, max_length=data.length, num_beams=5, no_repeat_ngram_size=2)
|
71 |
+
generated_text = gpt2tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
72 |
+
|
73 |
+
answer_data = { "answer": generated_text }
|
74 |
+
print("Answer:", generated_text)
|
75 |
+
|
76 |
+
return answer_data
|
77 |
+
else:
|
78 |
+
input_text = data.prompt
|
79 |
|
80 |
+
# Tokenize the input text
|
81 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
82 |
+
|
83 |
+
# Generate output using the model
|
84 |
+
output_ids = model.generate(input_ids, max_length=data.length, num_beams=5, no_repeat_ngram_size=2)
|
85 |
+
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
86 |
+
|
87 |
+
answer_data = { "answer": generated_text }
|
88 |
+
print("Answer:", generated_text)
|
89 |
+
|
90 |
+
return answer_data
|