from fastapi.staticfiles import StaticFiles from fastapi.responses import FileResponse from pydantic import BaseModel from fastapi import FastAPI import os from transformers import GPT2LMHeadModel, GPT2Tokenizer, AutoModelForCausalLM, AutoTokenizer import torch app = FastAPI() name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" customGen = False # microsoft/DialoGPT-small # microsoft/DialoGPT-medium # microsoft/DialoGPT-large # mistralai/Mixtral-8x7B-Instruct-v0.1 # Load the Hugging Face GPT-2 model and tokenizer model = AutoModelForCausalLM.from_pretrained(name) tokenizer = AutoTokenizer.from_pretrained(name) class req(BaseModel): prompt: str length: int @app.get("/") def read_root(): return FileResponse(path="templates/index.html", media_type="text/html") @app.post("/api") def read_root(data: req): print("Prompt:", data.prompt) print("Length:", data.length) input_text = data.prompt # Tokenize the input text input_ids = tokenizer.encode(input_text, return_tensors="pt") # Generate output using the model output_ids = model.generate(input_ids, max_length=data.length, num_beams=5, no_repeat_ngram_size=2) generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) answer_data = { "answer": generated_text } print("Answer:", generated_text) return answer_data