Spaces:
Runtime error
Runtime error
File size: 7,973 Bytes
3b3a783 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
####data util to get and preprocess data from a text and image pair to latents and text embeddings.
### all that is required is a csv file with an image url and text caption:
#!pip install datasets img2dataset accelerate diffusers
#!pip install git+https://github.com/openai/CLIP.git
import json
import os
from dataclasses import dataclass
from typing import List, Union
import clip
import h5py
import numpy as np
import pandas as pd
import torch
import torchvision.transforms as transforms
import webdataset as wds
from diffusers import AutoencoderKL
from img2dataset import download
from torch import Tensor, nn
from torch.utils.data import DataLoader
from tqdm import tqdm
@torch.no_grad()
def encode_text(label: Union[str, List[str]], model: nn.Module, device: str) -> Tensor:
text_tokens = clip.tokenize(label, truncate=True).to(device)
text_encoding = model.encode_text(text_tokens)
return text_encoding.cpu()
@torch.no_grad()
def encode_image(img: Tensor, vae: AutoencoderKL) -> Tensor:
x = img.to("cuda").to(torch.float16)
x = x * 2 - 1 # to make it between -1 and 1.
encoded = vae.encode(x, return_dict=False)[0].sample()
return encoded.cpu()
@torch.no_grad()
def decode_latents(out_latents: torch.FloatTensor, vae: AutoencoderKL) -> Tensor:
# expected to be in the unscaled latent space
out = vae.decode(out_latents.cuda())[0].cpu()
return ((out + 1) / 2).clip(0, 1)
def quantize_latents(lat: Tensor, clip_val: float = 20) -> Tensor:
"""scale and quantize latents to unit8"""
lat_norm = lat.clip(-clip_val, clip_val) / clip_val
return (((lat_norm + 1) / 2) * 255).to(torch.uint8)
def dequantize_latents(lat: Tensor, clip_val: float = 20) -> Tensor:
lat_norm = (lat.to(torch.float16) / 255) * 2 - 1
return lat_norm * clip_val
def append_to_dataset(dataset: h5py.File, new_data: Tensor) -> None:
"""Appends new data to an HDF5 dataset."""
new_size = dataset.shape[0] + new_data.shape[0]
dataset.resize(new_size, axis=0)
dataset[-new_data.shape[0] :] = new_data
def get_text_and_latent_embeddings_hdf5(
dataloader: DataLoader, vae: AutoencoderKL, model: nn.Module, drive_save_path: str
) -> None:
"""Process img/text inptus that outputs an latent and text embeddings and text_prompts, saving encodings as float16."""
img_latent_path = os.path.join(drive_save_path, "image_latents.hdf5")
text_embed_path = os.path.join(drive_save_path, "text_encodings.hdf5")
metadata_csv_path = os.path.join(drive_save_path, "metadata.csv")
with h5py.File(img_latent_path, "a") as img_file, h5py.File(text_embed_path, "a") as text_file:
if "image_latents" not in img_file:
img_ds = img_file.create_dataset(
"image_latents",
shape=(0, 4, 32, 32),
maxshape=(None, 4, 32, 32),
dtype="float16",
chunks=True,
)
else:
img_ds = img_file["image_latents"]
if "text_encodings" not in text_file:
text_ds = text_file.create_dataset(
"text_encodings", shape=(0, 768), maxshape=(None, 768), dtype="float16", chunks=True
)
else:
text_ds = text_file["text_encodings"]
for img, (label, url) in tqdm(dataloader):
text_encoding = encode_text(label, model).cpu().numpy().astype(np.float16)
img_encoding = encode_image(img, vae).cpu().numpy().astype(np.float16)
append_to_dataset(img_ds, img_encoding)
append_to_dataset(text_ds, text_encoding)
metadata_df = pd.DataFrame({"text": label, "url": url})
if os.path.exists(metadata_csv_path):
metadata_df.to_csv(metadata_csv_path, mode="a", header=False, index=False)
else:
metadata_df.to_csv(metadata_csv_path, mode="w", header=True, index=False)
def download_and_process_data(
latent_save_path="latents",
raw_imgs_save_path="raw_imgs",
csv_path="imgs.csv",
image_size=256,
bs=64,
caption_col="captions",
url_col="url",
download_data=True,
number_sample_per_shard=10000,
):
if not os.path.exists(raw_imgs_save_path):
os.mkdir(raw_imgs_save_path)
if not os.path.exists(latent_save_path):
os.mkdir(latent_save_path)
if download_data:
download(
processes_count=8,
thread_count=64,
url_list=csv_path,
image_size=image_size,
output_folder=raw_imgs_save_path,
output_format="webdataset",
input_format="csv",
url_col=url_col,
caption_col=caption_col,
enable_wandb=False,
number_sample_per_shard=number_sample_per_shard,
distributor="multiprocessing",
resize_mode="center_crop",
)
files = os.listdir(raw_imgs_save_path)
tar_files = [os.path.join(raw_imgs_save_path, file) for file in files if file.endswith(".tar")]
print(tar_files)
dataset = wds.WebDataset(tar_files)
transform = transforms.Compose(
[
transforms.ToTensor(),
]
)
# output is (img_tensor, (caption , url_col)) per batch:
dataset = (
dataset.decode("pil")
.to_tuple("jpg;png", "json")
.map_tuple(transform, lambda x: (x["caption"], x[url_col]))
)
dataloader = DataLoader(dataset, batch_size=bs, shuffle=False)
model, _ = clip.load("ViT-L/14")
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
vae = vae.to("cuda")
model.to("cuda")
print("Starting to encode latents and text:")
get_text_and_latent_embeddings_hdf5(dataloader, vae, model, latent_save_path)
print("Finished encode latents and text:")
@dataclass
class DataConfiguration:
data_link: str
caption_col: str = "caption"
url_col: str = "url"
latent_save_path: str = "latents_folder"
raw_imgs_save_path: str = "raw_imgs_folder"
use_drive: bool = False
initial_csv_path: str = "imgs.csv"
number_sample_per_shard: int = 10000
image_size: int = 256
batch_size: int = 64
download_data: bool = True
if __name__ == "__main__":
use_wandb = False
if use_wandb:
import wandb
os.environ["WANDB_API_KEY"] = "key"
#!wandb login
data_link = "https://huggingface.co/datasets/zzliang/GRIT/resolve/main/grit-20m/coyo_0_snappy.parquet?download=true"
data_config = DataConfiguration(
data_link=data_link,
latent_save_path="latent_folder",
raw_imgs_save_path="raw_imgs_folder",
download_data=False,
number_sample_per_shard=1000,
)
if use_wandb:
wandb.init(project="image_vae_processing", entity="apapiu", config=data_config)
if not os.path.exists(data_config.latent_save_path):
os.mkdir(data_config.latent_save_path)
config_file_path = os.path.join(data_config.latent_save_path, "config.json")
with open(config_file_path, "w") as f:
json.dump(data_config.__dict__, f)
print("Config saved to:", config_file_path)
df = pd.read_parquet(data_link)
###add additional data cleaning here...should I
df = df.iloc[:3000]
df[["key", "url", "caption"]].to_csv("imgs.csv", index=None)
if data_config.use_drive:
from google.colab import drive
drive.mount("/content/drive")
download_and_process_data(
latent_save_path=data_config.latent_save_path,
raw_imgs_save_path=data_config.raw_imgs_save_path,
csv_path=data_config.initial_csv_path,
image_size=data_config.image_size,
bs=data_config.batch_size,
caption_col=data_config.caption_col,
url_col=data_config.url_col,
download_data=data_config.download_data,
number_sample_per_shard=data_config.number_sample_per_shard,
)
if use_wandb:
wandb.finish()
|