File size: 6,831 Bytes
3b3a783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610afda
 
3b3a783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
#!/usr/bin/env python3

import copy
from dataclasses import asdict, dataclass

import numpy as np
import torch
import torchvision
import torchvision.utils as vutils
import wandb
from accelerate import Accelerator
from diffusers import AutoencoderKL
from PIL.Image import Image
from torch import Tensor, nn
from torch.utils.data import DataLoader, TensorDataset
from tqdm import tqdm

from denoiser import Denoiser
from diffusion import DiffusionGenerator


def eval_gen(diffuser: DiffusionGenerator, labels: Tensor) -> Image:
    class_guidance = 4.5
    seed = 10
    out, _ = diffuser.generate(
        labels=torch.repeat_interleave(labels, 8, dim=0),
        num_imgs=64,
        class_guidance=class_guidance,
        seed=seed,
        n_iter=40,
        exponent=1,
        sharp_f=0.1,
    )

    out = to_pil((vutils.make_grid((out + 1) / 2, nrow=8, padding=4)).float().clip(0, 1))
    out.save(f"emb_val_cfg:{class_guidance}_seed:{seed}.png")

    return out


def count_parameters(model: nn.Module):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)


def count_parameters_per_layer(model: nn.Module):
    for name, param in model.named_parameters():
        print(f"{name}: {param.numel()} parameters")


to_pil = torchvision.transforms.ToPILImage()


def update_ema(ema_model: nn.Module, model: nn.Module, alpha: float = 0.999):
    with torch.no_grad():
        for ema_param, model_param in zip(ema_model.parameters(), model.parameters()):
            ema_param.data.mul_(alpha).add_(model_param.data, alpha=1 - alpha)


@dataclass
class ModelConfig:
    embed_dim: int = 512
    n_layers: int = 6
    clip_embed_size: int = 768
    scaling_factor: int = 8
    patch_size: int = 2
    image_size: int = 32
    n_channels: int = 4
    dropout: float = 0
    mlp_multiplier: int = 4
    batch_size: int = 128
    class_guidance: int = 3
    lr: float = 3e-4
    n_epoch: int = 100
    alpha: float = 0.999
    noise_embed_dims: int = 128
    diffusion_n_iter: int = 35
    from_scratch: bool = True
    run_id: str = ""
    model_name: str = ""
    beta_a: float = 0.75
    beta_b: float = 0.75
    save_and_eval_every_iters: int = 1000


@dataclass
class DataConfig:
    latent_path: str  # path to a numpy file containing latents
    text_emb_path: str
    val_path: str


def main(config: ModelConfig, dataconfig: DataConfig) -> None:
    """main train loop to be used with accelerate"""

    accelerator = Accelerator(mixed_precision="fp16", log_with="wandb")

    accelerator.print("Loading Data:")
    latent_train_data = torch.tensor(np.load(dataconfig.latent_path), dtype=torch.float32)
    train_label_embeddings = torch.tensor(np.load(dataconfig.text_emb_path), dtype=torch.float32)
    emb_val = torch.tensor(np.load(dataconfig.val_path), dtype=torch.float32)
    dataset = TensorDataset(latent_train_data, train_label_embeddings)
    train_loader = DataLoader(dataset, batch_size=config.batch_size, shuffle=True)

    vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

    if accelerator.is_main_process:
        vae = vae.to(accelerator.device)

    model = Denoiser(
        image_size=config.image_size,
        noise_embed_dims=config.noise_embed_dims,
        patch_size=config.patch_size,
        embed_dim=config.embed_dim,
        dropout=config.dropout,
        n_layers=config.n_layers,
    )

    loss_fn = nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=config.lr)

    accelerator.print("Compiling model:")
    model = torch.compile(model)

    if not config.from_scratch:
        accelerator.print("Loading Model:")
        wandb.restore(
            config.model_name, run_path=f"apapiu/cifar_diffusion/runs/{config.run_id}", replace=True
        )
        full_state_dict = torch.load(config.model_name)
        model.load_state_dict(full_state_dict["model_ema"])
        optimizer.load_state_dict(full_state_dict["opt_state"])
        global_step = full_state_dict["global_step"]
    else:
        global_step = 0

    if accelerator.is_local_main_process:
        ema_model = copy.deepcopy(model).to(accelerator.device)
        diffuser = DiffusionGenerator(ema_model, vae, accelerator.device, torch.float32)

    accelerator.print("model prep")
    model, train_loader, optimizer = accelerator.prepare(model, train_loader, optimizer)

    accelerator.init_trackers(project_name="cifar_diffusion", config=asdict(config))

    accelerator.print(count_parameters(model))
    accelerator.print(count_parameters_per_layer(model))

    ### Train:
    for i in range(1, config.n_epoch + 1):
        accelerator.print(f"epoch: {i}")

        for x, y in tqdm(train_loader):
            x = x / config.scaling_factor

            noise_level = torch.tensor(
                np.random.beta(config.beta_a, config.beta_b, len(x)), device=accelerator.device
            )
            signal_level = 1 - noise_level
            noise = torch.randn_like(x)

            x_noisy = noise_level.view(-1, 1, 1, 1) * noise + signal_level.view(-1, 1, 1, 1) * x

            x_noisy = x_noisy.float()
            noise_level = noise_level.float()
            label = y

            prob = 0.15
            mask = torch.rand(y.size(0), device=accelerator.device) < prob
            label[mask] = 0  # OR replacement_vector

            if global_step % config.save_and_eval_every_iters == 0:
                accelerator.wait_for_everyone()
                if accelerator.is_main_process:
                    ##eval and saving:
                    out = eval_gen(diffuser=diffuser, labels=emb_val)
                    out.save("img.jpg")
                    accelerator.log({f"step: {global_step}": wandb.Image("img.jpg")})

                    opt_unwrapped = accelerator.unwrap_model(optimizer)
                    full_state_dict = {
                        "model_ema": ema_model.state_dict(),
                        "opt_state": opt_unwrapped.state_dict(),
                        "global_step": global_step,
                    }
                    accelerator.save(full_state_dict, config.model_name)
                    wandb.save(config.model_name)

            model.train()

            with accelerator.accumulate():
                ###train loop:
                optimizer.zero_grad()

                pred = model(x_noisy, noise_level.view(-1, 1), label)
                loss = loss_fn(pred, x)
                accelerator.log({"train_loss": loss.item()}, step=global_step)
                accelerator.backward(loss)
                optimizer.step()

                if accelerator.is_main_process:
                    update_ema(ema_model, model, alpha=config.alpha)

            global_step += 1
    accelerator.end_training()


# args = (config, data_path, val_path)
# notebook_launcher(training_loop)