Spaces:
Runtime error
Runtime error
File size: 6,831 Bytes
3b3a783 610afda 3b3a783 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
#!/usr/bin/env python3
import copy
from dataclasses import asdict, dataclass
import numpy as np
import torch
import torchvision
import torchvision.utils as vutils
import wandb
from accelerate import Accelerator
from diffusers import AutoencoderKL
from PIL.Image import Image
from torch import Tensor, nn
from torch.utils.data import DataLoader, TensorDataset
from tqdm import tqdm
from denoiser import Denoiser
from diffusion import DiffusionGenerator
def eval_gen(diffuser: DiffusionGenerator, labels: Tensor) -> Image:
class_guidance = 4.5
seed = 10
out, _ = diffuser.generate(
labels=torch.repeat_interleave(labels, 8, dim=0),
num_imgs=64,
class_guidance=class_guidance,
seed=seed,
n_iter=40,
exponent=1,
sharp_f=0.1,
)
out = to_pil((vutils.make_grid((out + 1) / 2, nrow=8, padding=4)).float().clip(0, 1))
out.save(f"emb_val_cfg:{class_guidance}_seed:{seed}.png")
return out
def count_parameters(model: nn.Module):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def count_parameters_per_layer(model: nn.Module):
for name, param in model.named_parameters():
print(f"{name}: {param.numel()} parameters")
to_pil = torchvision.transforms.ToPILImage()
def update_ema(ema_model: nn.Module, model: nn.Module, alpha: float = 0.999):
with torch.no_grad():
for ema_param, model_param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(model_param.data, alpha=1 - alpha)
@dataclass
class ModelConfig:
embed_dim: int = 512
n_layers: int = 6
clip_embed_size: int = 768
scaling_factor: int = 8
patch_size: int = 2
image_size: int = 32
n_channels: int = 4
dropout: float = 0
mlp_multiplier: int = 4
batch_size: int = 128
class_guidance: int = 3
lr: float = 3e-4
n_epoch: int = 100
alpha: float = 0.999
noise_embed_dims: int = 128
diffusion_n_iter: int = 35
from_scratch: bool = True
run_id: str = ""
model_name: str = ""
beta_a: float = 0.75
beta_b: float = 0.75
save_and_eval_every_iters: int = 1000
@dataclass
class DataConfig:
latent_path: str # path to a numpy file containing latents
text_emb_path: str
val_path: str
def main(config: ModelConfig, dataconfig: DataConfig) -> None:
"""main train loop to be used with accelerate"""
accelerator = Accelerator(mixed_precision="fp16", log_with="wandb")
accelerator.print("Loading Data:")
latent_train_data = torch.tensor(np.load(dataconfig.latent_path), dtype=torch.float32)
train_label_embeddings = torch.tensor(np.load(dataconfig.text_emb_path), dtype=torch.float32)
emb_val = torch.tensor(np.load(dataconfig.val_path), dtype=torch.float32)
dataset = TensorDataset(latent_train_data, train_label_embeddings)
train_loader = DataLoader(dataset, batch_size=config.batch_size, shuffle=True)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
if accelerator.is_main_process:
vae = vae.to(accelerator.device)
model = Denoiser(
image_size=config.image_size,
noise_embed_dims=config.noise_embed_dims,
patch_size=config.patch_size,
embed_dim=config.embed_dim,
dropout=config.dropout,
n_layers=config.n_layers,
)
loss_fn = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=config.lr)
accelerator.print("Compiling model:")
model = torch.compile(model)
if not config.from_scratch:
accelerator.print("Loading Model:")
wandb.restore(
config.model_name, run_path=f"apapiu/cifar_diffusion/runs/{config.run_id}", replace=True
)
full_state_dict = torch.load(config.model_name)
model.load_state_dict(full_state_dict["model_ema"])
optimizer.load_state_dict(full_state_dict["opt_state"])
global_step = full_state_dict["global_step"]
else:
global_step = 0
if accelerator.is_local_main_process:
ema_model = copy.deepcopy(model).to(accelerator.device)
diffuser = DiffusionGenerator(ema_model, vae, accelerator.device, torch.float32)
accelerator.print("model prep")
model, train_loader, optimizer = accelerator.prepare(model, train_loader, optimizer)
accelerator.init_trackers(project_name="cifar_diffusion", config=asdict(config))
accelerator.print(count_parameters(model))
accelerator.print(count_parameters_per_layer(model))
### Train:
for i in range(1, config.n_epoch + 1):
accelerator.print(f"epoch: {i}")
for x, y in tqdm(train_loader):
x = x / config.scaling_factor
noise_level = torch.tensor(
np.random.beta(config.beta_a, config.beta_b, len(x)), device=accelerator.device
)
signal_level = 1 - noise_level
noise = torch.randn_like(x)
x_noisy = noise_level.view(-1, 1, 1, 1) * noise + signal_level.view(-1, 1, 1, 1) * x
x_noisy = x_noisy.float()
noise_level = noise_level.float()
label = y
prob = 0.15
mask = torch.rand(y.size(0), device=accelerator.device) < prob
label[mask] = 0 # OR replacement_vector
if global_step % config.save_and_eval_every_iters == 0:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
##eval and saving:
out = eval_gen(diffuser=diffuser, labels=emb_val)
out.save("img.jpg")
accelerator.log({f"step: {global_step}": wandb.Image("img.jpg")})
opt_unwrapped = accelerator.unwrap_model(optimizer)
full_state_dict = {
"model_ema": ema_model.state_dict(),
"opt_state": opt_unwrapped.state_dict(),
"global_step": global_step,
}
accelerator.save(full_state_dict, config.model_name)
wandb.save(config.model_name)
model.train()
with accelerator.accumulate():
###train loop:
optimizer.zero_grad()
pred = model(x_noisy, noise_level.view(-1, 1), label)
loss = loss_fn(pred, x)
accelerator.log({"train_loss": loss.item()}, step=global_step)
accelerator.backward(loss)
optimizer.step()
if accelerator.is_main_process:
update_ema(ema_model, model, alpha=config.alpha)
global_step += 1
accelerator.end_training()
# args = (config, data_path, val_path)
# notebook_launcher(training_loop)
|