image-gen / tld /diffusion.py
BeveledCube's picture
Pls work
610afda
raw
history blame
6.71 kB
from dataclasses import dataclass
import clip
import numpy as np
import requests
import torch
import torchvision.transforms as transforms
import torchvision.utils as vutils
from diffusers import AutoencoderKL
from torch import Tensor
from tqdm import tqdm
from denoiser import Denoiser
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
to_pil = transforms.ToPILImage()
@dataclass
class DiffusionGenerator:
model: Denoiser
vae: AutoencoderKL
device: torch.device
model_dtype: torch.dtype = torch.float32
@torch.no_grad()
def generate(
self,
labels: Tensor, # embeddings to condition on
n_iter: int = 30,
num_imgs: int = 16,
class_guidance: float = 3,
seed: int = 10,
scale_factor: int = 8, # latent scaling before decoding - should be ~ std of latent space
img_size: int = 32, # height, width of latent
sharp_f: float = 0.1,
bright_f: float = 0.1,
exponent: float = 1,
seeds: Tensor | None = None,
noise_levels=None,
use_ddpm_plus: bool = True,
):
"""Generate images via reverse diffusion.
if use_ddpm_plus=True uses Algorithm 2 DPM-Solver++(2M) here: https://arxiv.org/pdf/2211.01095.pdf
else use ddim with alpha = 1-sigma
"""
if noise_levels is None:
noise_levels = (1 - torch.pow(torch.arange(0, 1, 1 / n_iter), exponent)).tolist()
noise_levels[0] = 0.99
if use_ddpm_plus:
lambdas = [np.log((1 - sigma) / sigma) for sigma in noise_levels] # log snr
hs = [lambdas[i] - lambdas[i - 1] for i in range(1, len(lambdas))]
rs = [hs[i - 1] / hs[i] for i in range(1, len(hs))]
x_t = self.initialize_image(seeds, num_imgs, img_size, seed)
labels = torch.cat([labels, torch.zeros_like(labels)])
self.model.eval()
x0_pred_prev = None
for i in tqdm(range(len(noise_levels) - 1)):
curr_noise, next_noise = noise_levels[i], noise_levels[i + 1]
x0_pred = self.pred_image(x_t, labels, curr_noise, class_guidance)
if x0_pred_prev is None:
x_t = ((curr_noise - next_noise) * x0_pred + next_noise * x_t) / curr_noise
else:
if use_ddpm_plus:
# x0_pred is a combination of the two previous x0_pred:
D = (1 + 1 / (2 * rs[i - 1])) * x0_pred - (1 / (2 * rs[i - 1])) * x0_pred_prev
else:
# ddim:
D = x0_pred
x_t = ((curr_noise - next_noise) * D + next_noise * x_t) / curr_noise
x0_pred_prev = x0_pred
x0_pred = self.pred_image(x_t, labels, next_noise, class_guidance)
# shifting latents works a bit like an image editor:
x0_pred[:, 3, :, :] += sharp_f
x0_pred[:, 0, :, :] += bright_f
x0_pred_img = self.vae.decode((x0_pred * scale_factor).to(self.model_dtype))[0].cpu()
return x0_pred_img, x0_pred
def pred_image(self, noisy_image, labels, noise_level, class_guidance):
num_imgs = noisy_image.size(0)
noises = torch.full((2 * num_imgs, 1), noise_level)
x0_pred = self.model(
torch.cat([noisy_image, noisy_image]),
noises.to(self.device, self.model_dtype),
labels.to(self.device, self.model_dtype),
)
x0_pred = self.apply_classifier_free_guidance(x0_pred, num_imgs, class_guidance)
return x0_pred
def initialize_image(self, seeds, num_imgs, img_size, seed):
"""Initialize the seed tensor."""
if seeds is None:
generator = torch.Generator(device=self.device)
generator.manual_seed(seed)
return torch.randn(
num_imgs,
4,
img_size,
img_size,
dtype=self.model_dtype,
device=self.device,
generator=generator,
)
else:
return seeds.to(self.device, self.model_dtype)
def apply_classifier_free_guidance(self, x0_pred, num_imgs, class_guidance):
"""Apply classifier-free guidance to the predictions."""
x0_pred_label, x0_pred_no_label = x0_pred[:num_imgs], x0_pred[num_imgs:]
return class_guidance * x0_pred_label + (1 - class_guidance) * x0_pred_no_label
@dataclass
class LTDConfig:
vae_scale_factor: float = 8
img_size: int = 32
model_dtype: torch.dtype = torch.float32
file_url: str = None # = "https://huggingface.co/apapiu/small_ldt/resolve/main/state_dict_378000.pth"
local_filename: str = "state_dict_378000.pth"
vae_name: str = "ByteDance/SDXL-Lightning"
clip_model_name: str = "ViT-L/14"
denoiser: Denoiser = Denoiser(
image_size=32,
noise_embed_dims=256,
patch_size=2,
embed_dim=256,
dropout=0,
n_layers=4,
)
def download_file(url, filename):
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(filename, "wb") as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
@torch.no_grad()
def encode_text(label, model):
text_tokens = clip.tokenize(label, truncate=True).to(device)
text_encoding = model.encode_text(text_tokens)
return text_encoding.cpu()
class DiffusionTransformer:
def __init__(self, config: LTDConfig):
denoiser = config.denoiser.to(config.model_dtype)
if config.file_url is not None:
print(f"Downloading model from {config.file_url}")
download_file(config.file_url, config.local_filename)
state_dict = torch.load(config.local_filename, map_location=torch.device("cpu"))
denoiser.load_state_dict(state_dict)
denoiser = denoiser.to(device)
vae = AutoencoderKL.from_pretrained(config.vae_name, torch_dtype=config.model_dtype).to(device)
self.clip_model, preprocess = clip.load(config.clip_model_name)
self.clip_model = self.clip_model.to(device)
self.diffuser = DiffusionGenerator(denoiser, vae, device, config.model_dtype)
def generate_image_from_text(
self, prompt: str, class_guidance=6, seed=11, num_imgs=1, img_size=32, n_iter=15
):
nrow = int(np.sqrt(num_imgs))
cur_prompts = [prompt] * num_imgs
labels = encode_text(cur_prompts, self.clip_model)
out, out_latent = self.diffuser.generate(
labels=labels,
num_imgs=num_imgs,
class_guidance=class_guidance,
seed=seed,
n_iter=n_iter,
exponent=1,
scale_factor=8,
sharp_f=0,
bright_f=0,
)
out = to_pil((vutils.make_grid((out + 1) / 2, nrow=nrow, padding=4)).float().clip(0, 1))
return out