File size: 4,569 Bytes
fd64912
5721af8
b4bd0de
b9dc3fd
d67bb32
5721af8
4ddc0d8
9216a0a
4ddc0d8
d6c911d
 
4ddc0d8
f1985ef
4ddc0d8
 
 
5721af8
4ddc0d8
8f34be7
9216a0a
 
4ddc0d8
 
 
 
 
 
 
 
 
5721af8
4ddc0d8
 
 
 
 
 
 
 
1f6d39f
4ddc0d8
 
d67bb32
4ddc0d8
 
 
 
d67bb32
4ddc0d8
 
 
 
 
 
d67bb32
4ddc0d8
 
 
 
 
 
 
d67bb32
4ddc0d8
d67bb32
4ddc0d8
 
 
d67bb32
5721af8
4ddc0d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d67bb32
4ddc0d8
 
 
5721af8
4ddc0d8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from gtts import gTTS
from pytube import Search
import random
import os
import time

# Load pretrained models
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", return_all_scores=True)

# Streamlit page configuration
st.set_page_config(page_title="Grief and Loss Support Bot 🌿", page_icon="🌿", layout="centered")
st.markdown("<style>.css-1d391kg { background-color: #F3F7F6; }</style>", unsafe_allow_html=True)

# Title and welcome text
st.title("Grief and Loss Support Bot 🌿")
st.subheader("Your compassionate companion in tough times πŸ’š")

# Sidebar for additional features
with st.sidebar:
    st.header("🧘 Guided Meditation")
    if st.button("Play Meditation"):
        meditation_audio = "meditation.mp3"
        if not os.path.exists(meditation_audio):
            tts = gTTS("Take a deep breath. Relax and let go of any tension...", lang='en')
            tts.save(meditation_audio)
        st.audio(meditation_audio, format="audio/mp3")
    
    st.header("πŸ“– Short Comforting Story")
    story_theme = st.selectbox("Choose a theme for your story:", ["courage", "healing", "hope"])
    if st.button("Generate Story"):
        story_prompt = f"Tell me a comforting story about {story_theme}."
        input_ids = tokenizer.encode(story_prompt, return_tensors='pt')
        story_ids = model.generate(input_ids, max_length=150, temperature=0.8, repetition_penalty=1.1)
        story = tokenizer.decode(story_ids[0], skip_special_tokens=True)
        st.text_area("Here's your story:", story, height=200)

# User input section
user_input = st.text_input("Share what's on your mind...", placeholder="Type here...", max_chars=500)

if 'previous_responses' not in st.session_state:
    st.session_state.previous_responses = []
if 'badges' not in st.session_state:
    st.session_state.badges = []

# Generate empathetic response
def generate_response(user_input):
    input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
    chat_history_ids = model.generate(input_ids, max_length=150, temperature=0.7, top_k=50, repetition_penalty=1.2)
    response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
    return response

# Analyze user input for emotional tone
def get_emotion(user_input):
    emotions = emotion_classifier(user_input)
    emotions_sorted = sorted(emotions[0], key=lambda x: x['score'], reverse=True)
    return emotions_sorted[0]['label']

# Provide a response if user input is provided
if user_input:
    emotion = get_emotion(user_input)
    response = generate_response(user_input)
    
    # Display the bot's response
    st.session_state.previous_responses.append(response)
    st.text_area("Bot's Response:", response, height=250)
    
    # Assign motivational badges
    if emotion in ["joy", "optimism"]:
        badge = "🌟 Positivity Badge"
        if badge not in st.session_state.badges:
            st.session_state.badges.append(badge)
            st.success(f"Congratulations! You've earned a {badge}!")
    
    # Suggest coping activities
    st.info("🎨 Try a New Activity")
    activities = ["exercise", "yoga", "journaling", "painting", "meditation"]
    selected_activity = st.selectbox("Pick an activity:", activities)
    
    # Fetch YouTube video suggestions
    if st.button("Find Videos"):
        search = Search(selected_activity)
        search_results = search.results[:3]
        if not search_results:
            st.write(f"No results found for '{selected_activity}'.")
        else:
            for video in search_results:
                st.write(f"[{video.title}]({video.watch_url})")

    # Crisis resources
    if any(word in user_input.lower() for word in ["suicide", "help", "depressed"]):
        st.warning("Please reach out to a crisis hotline for immediate support.")
        st.write("[Find emergency resources here](https://www.helpguide.org/find-help.htm)")

    # Generate audio response
    tts = gTTS(response, lang='en')
    audio_file = "response.mp3"
    tts.save(audio_file)
    st.audio(audio_file, format="audio/mp3")

# Display badges and achievements
if st.session_state.badges:
    st.sidebar.header("πŸ… Achievements")
    for badge in st.session_state.badges:
        st.sidebar.write(badge)