Spaces:
Sleeping
Sleeping
File size: 4,569 Bytes
fd64912 5721af8 b4bd0de b9dc3fd d67bb32 5721af8 4ddc0d8 9216a0a 4ddc0d8 d6c911d 4ddc0d8 f1985ef 4ddc0d8 5721af8 4ddc0d8 8f34be7 9216a0a 4ddc0d8 5721af8 4ddc0d8 1f6d39f 4ddc0d8 d67bb32 4ddc0d8 d67bb32 4ddc0d8 d67bb32 4ddc0d8 d67bb32 4ddc0d8 d67bb32 4ddc0d8 d67bb32 5721af8 4ddc0d8 d67bb32 4ddc0d8 5721af8 4ddc0d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from gtts import gTTS
from pytube import Search
import random
import os
import time
# Load pretrained models
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", return_all_scores=True)
# Streamlit page configuration
st.set_page_config(page_title="Grief and Loss Support Bot πΏ", page_icon="πΏ", layout="centered")
st.markdown("<style>.css-1d391kg { background-color: #F3F7F6; }</style>", unsafe_allow_html=True)
# Title and welcome text
st.title("Grief and Loss Support Bot πΏ")
st.subheader("Your compassionate companion in tough times π")
# Sidebar for additional features
with st.sidebar:
st.header("π§ Guided Meditation")
if st.button("Play Meditation"):
meditation_audio = "meditation.mp3"
if not os.path.exists(meditation_audio):
tts = gTTS("Take a deep breath. Relax and let go of any tension...", lang='en')
tts.save(meditation_audio)
st.audio(meditation_audio, format="audio/mp3")
st.header("π Short Comforting Story")
story_theme = st.selectbox("Choose a theme for your story:", ["courage", "healing", "hope"])
if st.button("Generate Story"):
story_prompt = f"Tell me a comforting story about {story_theme}."
input_ids = tokenizer.encode(story_prompt, return_tensors='pt')
story_ids = model.generate(input_ids, max_length=150, temperature=0.8, repetition_penalty=1.1)
story = tokenizer.decode(story_ids[0], skip_special_tokens=True)
st.text_area("Here's your story:", story, height=200)
# User input section
user_input = st.text_input("Share what's on your mind...", placeholder="Type here...", max_chars=500)
if 'previous_responses' not in st.session_state:
st.session_state.previous_responses = []
if 'badges' not in st.session_state:
st.session_state.badges = []
# Generate empathetic response
def generate_response(user_input):
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
chat_history_ids = model.generate(input_ids, max_length=150, temperature=0.7, top_k=50, repetition_penalty=1.2)
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
# Analyze user input for emotional tone
def get_emotion(user_input):
emotions = emotion_classifier(user_input)
emotions_sorted = sorted(emotions[0], key=lambda x: x['score'], reverse=True)
return emotions_sorted[0]['label']
# Provide a response if user input is provided
if user_input:
emotion = get_emotion(user_input)
response = generate_response(user_input)
# Display the bot's response
st.session_state.previous_responses.append(response)
st.text_area("Bot's Response:", response, height=250)
# Assign motivational badges
if emotion in ["joy", "optimism"]:
badge = "π Positivity Badge"
if badge not in st.session_state.badges:
st.session_state.badges.append(badge)
st.success(f"Congratulations! You've earned a {badge}!")
# Suggest coping activities
st.info("π¨ Try a New Activity")
activities = ["exercise", "yoga", "journaling", "painting", "meditation"]
selected_activity = st.selectbox("Pick an activity:", activities)
# Fetch YouTube video suggestions
if st.button("Find Videos"):
search = Search(selected_activity)
search_results = search.results[:3]
if not search_results:
st.write(f"No results found for '{selected_activity}'.")
else:
for video in search_results:
st.write(f"[{video.title}]({video.watch_url})")
# Crisis resources
if any(word in user_input.lower() for word in ["suicide", "help", "depressed"]):
st.warning("Please reach out to a crisis hotline for immediate support.")
st.write("[Find emergency resources here](https://www.helpguide.org/find-help.htm)")
# Generate audio response
tts = gTTS(response, lang='en')
audio_file = "response.mp3"
tts.save(audio_file)
st.audio(audio_file, format="audio/mp3")
# Display badges and achievements
if st.session_state.badges:
st.sidebar.header("π
Achievements")
for badge in st.session_state.badges:
st.sidebar.write(badge)
|