Spaces:
Sleeping
Sleeping
File size: 3,432 Bytes
fd64912 8f34be7 b4bd0de 9216a0a f1985ef 8f34be7 f1985ef 8f34be7 162b1ba 9dfe35d 8f34be7 9216a0a 8f34be7 9dfe35d 8f34be7 9216a0a 9dfe35d 8f34be7 9216a0a 9dfe35d 7645fdc 9216a0a 2951ecb 9dfe35d d7596e9 f1985ef 7645fdc f1985ef 5e480b6 a452a78 f1985ef 62d4ef4 a452a78 62d4ef4 a452a78 62d4ef4 2951ecb 62d4ef4 f1985ef 9dfe35d 62d4ef4 503bff0 f1985ef 62d4ef4 9216a0a 80d269f f1985ef 9216a0a 7645fdc 4d516ad 9dfe35d 7645fdc 2951ecb 9dfe35d 8f34be7 7645fdc 9216a0a 9dfe35d 8f34be7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import streamlit as st
from transformers import pipeline
from gtts import gTTS
from pytube import Search
import os
# Initialize conversational model for empathetic dialogue
conversational_bot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
# Initialize sentiment analysis
sentiment_analysis = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
# Set up Streamlit page
st.set_page_config(page_title="Grief and Loss Support Bot", page_icon="πΏ", layout="centered")
st.markdown("""
<style>
.css-1d391kg { background-color: #F3F7F6; }
.css-ffhzg2 { font-size: 1.5em; font-weight: 500; color: #4C6D7D; }
.stTextInput>div>div>input { background-color: #D8E3E2; }
.stButton>button { background-color: #A9D0B6; color: white; border-radius: 5px; }
.stButton>button:hover { background-color: #8FB79A; }
.stTextInput>div>label { color: #4C6D7D; }
</style>
""", unsafe_allow_html=True)
# Title
st.title("Grief and Loss Support Bot πΏ")
st.subheader("Your compassionate companion in tough times π")
# Get user input
user_input = st.text_input("Share what's on your mind...", placeholder="Type here...", max_chars=500)
# Store previous response to check for repetition
if 'previous_response' not in st.session_state:
st.session_state.previous_response = ""
# Check if user has entered text
if user_input:
# Run sentiment analysis to check for distress
sentiment = sentiment_analysis(user_input)[0]
# Generate empathetic response with increased length and more context
response = conversational_bot(user_input, max_length=300, temperature=0.9, top_k=50, num_return_sequences=1)
# Choose the response that does not repeat what the user said
best_response = response[0]['generated_text']
# Ensure the response is supportive and does not repeat the user's input
if user_input.lower() in best_response.lower():
best_response = "I understand how you're feeling. You're not alone in this. I'm here to listen and help."
# Store the response for future comparison
st.session_state.previous_response = best_response
# Display response
st.text_area("Bot's Response:", best_response, height=250)
# Text-to-speech output
tts = gTTS(best_response, lang='en')
audio_file = "response.mp3"
tts.save(audio_file)
st.audio(audio_file, format="audio/mp3")
# Suggest a productive activity based on detected keywords
if any(keyword in user_input.lower() for keyword in ["lonely", "lost", "sad"]):
st.info("Here's a suggestion to help you cope:")
hobbies = ["journaling", "yoga", "painting"]
activity = st.selectbox("Choose an activity you'd like to try:", hobbies)
# Search YouTube for videos related to the selected activity
search = Search(activity)
search_results = search.results[:3] # limit results to 3 videos
for video in search_results:
st.write(f"[{video.title}]({video.watch_url})")
# Crisis resources
crisis_keywords = ["help", "suicide", "depressed", "emergency", "hurt", "lost"]
if any(keyword in user_input.lower() for keyword in crisis_keywords):
st.warning("It seems like you might be in distress. Please reach out to a crisis hotline or a trusted individual.")
st.write("[Find emergency resources here](https://www.helpguide.org/find-help.htm)")
|