Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import pipeline | |
from youtubesearchpython import VideosSearch | |
# Set up the page configuration for a welcoming appearance | |
st.set_page_config(page_title="Grief and Loss Support Bot", page_icon="ποΈ", layout="centered") | |
# Customizing the app style for a soothing and modern look | |
st.markdown(""" | |
<style> | |
.css-1d391kg { | |
background-color: #F3F7F6; | |
} | |
.css-ffhzg2 { | |
font-size: 1.5em; | |
font-weight: 500; | |
color: #4C6D7D; | |
} | |
.stTextInput>div>div>input { | |
background-color: #D8E3E2; | |
} | |
.stButton>button { | |
background-color: #A9D0B6; | |
color: white; | |
border-radius: 5px; | |
border: none; | |
} | |
.stButton>button:hover { | |
background-color: #8FB79A; | |
} | |
.stTextInput>div>label { | |
color: #4C6D7D; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Title and introduction | |
st.title("Grief and Loss Support Bot ποΈ") | |
st.subheader("We are here for you. π Your companion in tough times") | |
# Load the conversational model pipeline | |
try: | |
conversational_pipeline = pipeline(task="conversational", model="microsoft/DialoGPT-medium") | |
except Exception as e: | |
st.error(f"Error loading the conversational model: {e}") | |
# Load the TTS pipeline for generating audio | |
try: | |
tts = pipeline(task="text-to-audio", model="espnet/kan-bayashi_ljspeech_vits", device=0 if torch.cuda.is_available() else -1) | |
except Exception as e: | |
st.error(f"Error loading the TTS model: {e}") | |
# User input for conversation | |
user_input = st.text_input("Share what's on your mind...", placeholder="Type here...", max_chars=500) | |
if user_input: | |
# Generate a conversational response | |
response = conversational_pipeline(user_input) | |
response_text = response[0]['generated_text'] | |
st.write("Bot's Response:") | |
st.write(response_text) | |
# Generate audio from the response text | |
try: | |
audio_output = tts(response_text) | |
audio_file_path = "response_audio.wav" | |
with open(audio_file_path, "wb") as f: | |
f.write(audio_output["audio"]) | |
st.audio(audio_file_path) | |
except Exception as e: | |
st.error(f"Error generating audio: {e}") | |
# Provide hobby suggestions | |
st.markdown("### Suggested Hobbies and Activities") | |
hobby_prompt = "Suggest hobbies and activities for emotional well-being:" | |
hobby_response = pipeline("text-generation", model="gpt2")(hobby_prompt, max_length=50, num_return_sequences=1) | |
st.write(hobby_response[0]['generated_text']) | |
# Search for coping videos on YouTube | |
st.markdown("### Informational YouTube Videos") | |
video_search = VideosSearch('productive hobbies and coping with grief', limit=3) | |
results = video_search.result() | |
for video in results['result']: | |
st.write(f"[{video['title']}]({video['link']})") | |