Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from gtts import gTTS | |
from pytube import Search | |
import random | |
import os | |
# Load pretrained models | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") | |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") | |
# Load GPT-2 model and tokenizer for story generation | |
gpt2_tokenizer = AutoTokenizer.from_pretrained("gpt2-medium") | |
gpt2_model = AutoModelForCausalLM.from_pretrained("gpt2-medium") | |
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", return_all_scores=True) | |
# Function to generate a comforting story using GPT-2 | |
def generate_story(theme): | |
# A detailed prompt for generating a comforting story about the selected theme | |
story_prompt = f"Write a comforting, detailed, and heartwarming story about {theme}. The story should include a character who faces a tough challenge, finds hope, and ultimately overcomes the situation with a positive resolution." | |
# Generate story using GPT-2 | |
input_ids = gpt2_tokenizer.encode(story_prompt, return_tensors='pt') | |
story_ids = gpt2_model.generate( | |
input_ids, | |
max_length=500, # Generate longer stories | |
temperature=0.8, # Balanced creativity | |
top_p=0.9, | |
repetition_penalty=1.2, | |
num_return_sequences=1 | |
) | |
# Decode the generated text | |
story = gpt2_tokenizer.decode(story_ids[0], skip_special_tokens=True) | |
return story | |
def generate_response(user_input): | |
response_prompt = ( | |
f"A user is feeling very sad and overwhelmed: '{user_input}'. " | |
"You are a compassionate support bot. Respond with empathy, encouragement, and reassurance." | |
) | |
input_ids = gpt2_tokenizer.encode(response_prompt, return_tensors='pt') | |
response_ids = gpt2_model.generate( | |
input_ids, | |
max_length=150, | |
temperature=0.8, | |
top_k=40, | |
repetition_penalty=1.1, | |
num_return_sequences=1 | |
) | |
# Decode the response and clean it up by removing the prompt | |
response = gpt2_tokenizer.decode(response_ids[0], skip_special_tokens=True) | |
# Strip out the prompt portion to get a clean, empathetic message | |
cleaned_response = response.replace(f"A user is feeling very sad and overwhelmed:{user_input}.You are a compassionate support bot. Respond with empathy, encouragement, and reassurance", "").strip() | |
return cleaned_response | |
# Analyze user input for emotional tone | |
def get_emotion(user_input): | |
emotions = emotion_classifier(user_input) | |
emotions_sorted = sorted(emotions[0], key=lambda x: x['score'], reverse=True) | |
return emotions_sorted[0]['label'] | |
# Function to fetch YouTube videos | |
def fetch_youtube_videos(activity): | |
search = Search(f"{activity} for mental health relaxation") | |
search_results = search.results[:3] | |
videos = [] | |
for video in search_results: | |
video_url = f"https://www.youtube.com/watch?v={video.video_id}" | |
videos.append((video.title, video_url)) | |
return videos | |
# Streamlit page configuration | |
st.set_page_config(page_title="Grief and Loss Support Bot πΏ", page_icon="πΏ", layout="centered") | |
st.markdown("<style>.css-1d391kg { background-color: #F3F7F6; }</style>", unsafe_allow_html=True) | |
st.title("Grief and Loss Support Bot πΏ") | |
st.subheader("Your compassionate companion in tough times π") | |
# Sidebar for Meditation and Story Generation | |
with st.sidebar: | |
st.header("π§ Guided Meditation") | |
if st.button("Play Meditation"): | |
meditation_audio = "meditation.mp3" | |
if not os.path.exists(meditation_audio): | |
tts = gTTS("Take a deep breath. Relax and let go of any tension...", lang='en') | |
tts.save(meditation_audio) | |
st.audio(meditation_audio, format="audio/mp3") | |
# Generating a comforting story | |
st.sidebar.header("π Short Comforting Story") | |
story_theme = st.selectbox("Choose a theme for your story:", ["courage", "healing", "hope"]) | |
if st.sidebar.button("Generate Story"): | |
with st.spinner("Generating your story..."): | |
story = generate_story(story_theme) | |
st.text_area("Here's your story:", story, height=300) | |
# User input section | |
user_input = st.text_input("Share what's on your mind. I am here to listen...", placeholder="Type here...", max_chars=500, key="user_input_1") | |
# Initialize session state | |
if 'previous_responses' not in st.session_state: | |
st.session_state.previous_responses = [] | |
if 'badges' not in st.session_state: | |
st.session_state.badges = [] | |
# Initialize session state | |
if 'badges' not in st.session_state: | |
st.session_state.badges = [] | |
if user_input: | |
with st.spinner("Analyzing your input..."): | |
# Get the emotion of the user input | |
emotion = get_emotion(user_input) | |
# Generate an empathetic response | |
response = generate_response(user_input) | |
# Display the bot's response | |
st.text_area("Bot's Response:", response, height=250) | |
# Assign badges based on the detected emotion | |
if emotion in ["joy", "optimism"]: | |
badge = "π Positivity Badge" | |
if badge not in st.session_state.badges: | |
st.session_state.badges.append(badge) | |
st.success(f"Congratulations! You've earned a {badge}!") | |
# Suggest activities based on emotion | |
st.info("π¨ Try a New Activity") | |
activities = ["exercise", "yoga", "journaling", "painting", "meditation", "swimming"] | |
selected_activity = st.selectbox("Pick an activity:", activities) | |
if st.button("Find Videos"): | |
videos = fetch_youtube_videos(selected_activity) | |
if videos: | |
for title, url in videos: | |
st.write(f"[{title}]({url})") | |
else: | |
st.write(f"No results found for '{selected_activity}'.") | |
# Crisis resources | |
if user_input and any(word in user_input.lower() for word in ["suicide", "help", "depressed"]): | |
st.warning("Please reach out to a crisis hotline for immediate support.") | |
st.write("[Find emergency resources here](https://www.helpguide.org/find-help.htm)") | |
# Generate audio response | |
if user_input: | |
tts = gTTS(response, lang='en') | |
audio_file = "response.mp3" | |
tts.save(audio_file) | |
st.audio(audio_file, format="audio/mp3") | |
# Display badgesz | |
if st.session_state.badges: | |
st.sidebar.header("π Achievements") | |
for badge in st.session_state.badges: | |
st.sidebar.write(badge) |