CompanAIon / app.py
Bey007's picture
Update app.py
3d867ba verified
raw
history blame
3.77 kB
import streamlit as st
from transformers import pipeline
from gtts import gTTS
from pytube import Search
import os
# Initialize models
conversational_bot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
sentiment_analysis = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
# Set up Streamlit page
st.set_page_config(page_title="Grief and Loss Support Bot", page_icon="🌿", layout="centered")
st.markdown("""
<style>
.css-1d391kg { background-color: #F3F7F6; }
.css-ffhzg2 { font-size: 1.5em; font-weight: 500; color: #4C6D7D; }
.stTextInput>div>div>input { background-color: #D8E3E2; }
.stButton>button { background-color: #A9D0B6; color: white; border-radius: 5px; }
.stButton>button:hover { background-color: #8FB79A; }
.stTextInput>div>label { color: #4C6D7D; }
</style>
""", unsafe_allow_html=True)
# Title
st.title("Grief and Loss Support Bot 🌿")
st.subheader("Your compassionate companion in tough times πŸ’š")
# Get user input
user_input = st.text_input("How are you feeling today?", placeholder="Share what's on your mind...", max_chars=500)
# Check if user has entered text
if user_input:
# Run sentiment analysis to assess mood
try:
sentiment = sentiment_analysis(user_input)[0]
sentiment_label = sentiment['label'].lower()
st.write(f"Sentiment detected: {sentiment_label}") # Debugging line
except Exception as e:
st.write(f"Error in sentiment analysis: {e}") # Error handling
# Generate empathetic response from the conversational bot
try:
bot_response = conversational_bot(user_input, max_length=150)[0]['generated_text']
st.write(f"Bot Response: {bot_response}") # Debugging line
except Exception as e:
st.write(f"Error generating bot response: {e}") # Error handling
# Display response
st.text_area("Bot's Response:", bot_response, height=150)
# Text-to-speech output
tts = gTTS(bot_response, lang='en')
audio_file = "response.mp3"
tts.save(audio_file)
st.audio(audio_file, format="audio/mp3")
# Suggest an activity
if sentiment_label == "negative":
st.info("Here's a suggestion to help lift your spirits:")
activities = {
"relaxation": ["mindful breathing", "yoga"],
"creative": ["painting", "writing in a journal"],
"exercise": ["a short walk", "stretching"],
"self-care": ["listening to calming music", "meditation"]
}
# Choose activity based on keyword in input
if any(keyword in user_input.lower() for keyword in ["lonely", "lost", "sad", "down"]):
activity_category = "self-care"
elif any(keyword in user_input.lower() for keyword in ["stress", "pressure", "overwhelmed"]):
activity_category = "relaxation"
else:
activity_category = "creative"
suggested_activity = activities[activity_category]
st.write(f"Activity Suggestion: {suggested_activity}")
# Search YouTube for videos related to the selected activity
search = Search(suggested_activity[0])
search_results = search.results[:2] # limit results to 2 videos
for video in search_results:
st.write(f"[{video.title}]({video.watch_url})")
# Crisis resources for critical keywords
crisis_keywords = ["help", "suicide", "depressed", "emergency", "hurt", "lost"]
if any(keyword in user_input.lower() for keyword in crisis_keywords):
st.warning("It seems like you might be in distress. Please reach out to a crisis hotline or a trusted individual.")
st.write("[Find emergency resources here](https://www.helpguide.org/find-help.htm)")