CompanAIon / app.py
Bey007's picture
Update app.py
b0faac5 verified
raw
history blame
5.59 kB
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from gtts import gTTS
from pytube import Search
import random
import os
import time
# Load pretrained models
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", return_all_scores=True)
# Function to generate a comforting story using the pretrained model
def generate_story(theme):
# A more detailed prompt for generating a story about courage
story_prompt = f"Tell me a detailed, comforting, and heartwarming story about {theme}. The story should include a character facing a tough challenge, showing immense courage, and ultimately overcoming it with a positive resolution. Include specific moments of struggle and inspiration."
input_ids = tokenizer.encode(story_prompt, return_tensors='pt')
story_ids = model.generate(
input_ids,
max_length=500, # Increase length for more detailed content
temperature=0.9, # Encourage creative storytelling
repetition_penalty=1.1,
num_return_sequences=1
)
# Decode the generated story text
story = tokenizer.decode(story_ids[0], skip_special_tokens=True)
return story
# Streamlit page configuration
st.set_page_config(page_title="Grief and Loss Support Bot 🌿", page_icon="🌿", layout="centered")
st.markdown("<style>.css-1d391kg { background-color: #F3F7F6; }</style>", unsafe_allow_html=True)
# Title and welcome text
st.title("Grief and Loss Support Bot 🌿")
st.subheader("Your compassionate companion in tough times πŸ’š")
# Sidebar for additional features
with st.sidebar:
st.header("🧘 Guided Meditation")
if st.button("Play Meditation"):
meditation_audio = "meditation.mp3"
if not os.path.exists(meditation_audio):
tts = gTTS("Take a deep breath. Relax and let go of any tension...", lang='en')
tts.save(meditation_audio)
st.audio(meditation_audio, format="audio/mp3")
st.header("πŸ“– Short Comforting Story")
story_theme = st.selectbox("Choose a theme for your story:", ["courage", "healing", "hope"])
if st.button("Generate Story"):
with st.spinner("Generating your story..."):
story = generate_story(story_theme)
st.text_area("Here's your story:", story, height=300)
# User input section
user_input = st.text_input("Share what's on your mind...", placeholder="Type here...", max_chars=500)
if 'previous_responses' not in st.session_state:
st.session_state.previous_responses = []
if 'badges' not in st.session_state:
st.session_state.badges = []
def generate_response(user_input):
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
chat_history_ids = model.generate(
input_ids,
max_length=350, # Increase length for more detailed responses
temperature=0.85, # Adjust temperature for creative responses
top_k=50,
repetition_penalty=1.2,
num_return_sequences=1
)
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
# Analyze user input for emotional tone
def get_emotion(user_input):
emotions = emotion_classifier(user_input)
emotions_sorted = sorted(emotions[0], key=lambda x: x['score'], reverse=True)
return emotions_sorted[0]['label']
# Provide a response if user input is provided
if user_input:
emotion = get_emotion(user_input)
response = generate_response(user_input)
# Display the bot's response
st.session_state.previous_responses.append(response)
st.text_area("Bot's Response:", response, height=250)
# Assign motivational badges
if emotion in ["joy", "optimism"]:
badge = "🌟 Positivity Badge"
if badge not in st.session_state.badges:
st.session_state.badges.append(badge)
st.success(f"Congratulations! You've earned a {badge}!")
# Suggest coping activities
st.info("🎨 Try a New Activity")
activities = ["exercise", "yoga", "journaling", "painting", "meditation"]
selected_activity = st.selectbox("Pick an activity:", activities)
def fetch_youtube_videos(activity):
search = Search(f"{activity} for mental health relaxation")
search_results = search.results[:3]
videos = []
for video in search_results:
video_url = f"https://www.youtube.com/watch?v={video.video_id}"
videos.append((video.title, video_url))
return videos
if st.button("Find Videos"):
videos = fetch_youtube_videos(selected_activity)
if not videos:
st.write(f"No results found for '{selected_activity}'.")
else:
for title, url in videos:
st.write(f"[{title}]({url})")
# Crisis resources
if any(word in user_input.lower() for word in ["suicide", "help", "depressed"]):
st.warning("Please reach out to a crisis hotline for immediate support.")
st.write("[Find emergency resources here](https://www.helpguide.org/find-help.htm)")
# Generate audio response
if user_input:
tts = gTTS(response, lang='en')
audio_file = "response.mp3"
tts.save(audio_file)
st.audio(audio_file, format="audio/mp3")
# Display badges and achievements
if st.session_state.badges:
st.sidebar.header("πŸ… Achievements")
for badge in st.session_state.badges:
st.sidebar.write(badge)