Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from gtts import gTTS | |
import torch | |
import tempfile | |
import random | |
from pytube import Search | |
# Load DialoGPT model and tokenizer from Hugging Face | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") | |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") | |
# Set up Streamlit page configuration | |
st.set_page_config(page_title="Grief and Loss Support Bot", page_icon="🌿", layout="centered") | |
st.markdown(""" | |
<style> | |
.css-1d391kg { background-color: #F3F7F6; } | |
.css-ffhzg2 { font-size: 1.5em; font-weight: 500; color: #4C6D7D; } | |
.stTextInput>div>div>input { background-color: #D8E3E2; } | |
.stButton>button { background-color: #A9D0B6; color: white; border-radius: 5px; } | |
.stButton>button:hover { background-color: #8FB79A; } | |
.stTextInput>div>label { color: #4C6D7D; } | |
</style> | |
""", unsafe_allow_html=True) | |
# Title and introduction to the bot | |
st.title("Grief and Loss Support Bot 🌿") | |
st.subheader("Your compassionate companion in tough times 💚") | |
# Initialize session state for chat history | |
if 'chat_history_ids' not in st.session_state: | |
st.session_state.chat_history_ids = None | |
if 'bot_messages' not in st.session_state: | |
st.session_state.bot_messages = [] | |
# User input | |
user_input = st.text_input("Share what's on your mind...", placeholder="Type here...", max_chars=500) | |
# Function to generate a response using DialoGPT | |
def generate_response(user_input): | |
if not user_input: | |
return "I'm here whenever you're ready to talk." | |
# Encode the user input and append to chat history | |
new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt') | |
bot_input_ids = new_user_input_ids if st.session_state.chat_history_ids is None else torch.cat([st.session_state.chat_history_ids, new_user_input_ids], dim=-1) | |
# Generate the bot's response | |
chat_history_ids = model.generate( | |
bot_input_ids, | |
max_length=200, | |
pad_token_id=tokenizer.eos_token_id, | |
temperature=0.7, | |
top_k=50, | |
repetition_penalty=1.2 | |
) | |
# Update the chat history | |
st.session_state.chat_history_ids = chat_history_ids | |
bot_response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) | |
bot_response += "\n\nYou're doing your best, and that’s all anyone can ask for. Please take care of yourself and know that it’s okay to take a step back when things feel overwhelming." | |
return bot_response | |
# Generate and display bot response if there's user input | |
if user_input: | |
response = generate_response(user_input) | |
st.session_state.bot_messages.append(response) | |
# Display bot's response | |
for message in st.session_state.bot_messages: | |
st.text_area("Bot's Response:", message, height=150) | |
# Text-to-speech output | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: | |
tts = gTTS(response, lang='en') | |
tts.save(tmp_file.name) | |
st.audio(tmp_file.name, format="audio/mp3") | |
# Activity suggestion based on detected keywords | |
if any(keyword in user_input.lower() for keyword in ["lonely", "lost", "sad", "overwhelmed", "academic", "exam"]): | |
st.info("Here's a suggestion to help you cope:") | |
# Activities based on user mood and needs | |
activities = { | |
"journaling": "Express your feelings in writing. Journaling is a great way to process emotions.", | |
"yoga": "Yoga helps you relax and refocus. Try some deep breathing exercises or light stretching.", | |
"painting": "Creative expression through painting or drawing can be soothing and help you release pent-up emotions.", | |
"meditation": "Take a moment to calm your mind. Guided meditation can help reduce stress and anxiety.", | |
"exercise": "Physical activity can lift your mood. Even a short walk in nature can make a big difference." | |
} | |
# Randomly suggest an activity | |
activity = random.choice(list(activities.keys())) | |
st.write(f"How about {activity}? {activities[activity]}") | |
# Search YouTube for related videos using pytube | |
search = Search(activity) | |
search_results = search.results[:3] # Limit results to 3 videos | |
if search_results: | |
for video in search_results: | |
st.write(f"[{video.title}]({video.watch_url})") | |
else: | |
st.write("Sorry, I couldn't find any relevant videos at the moment.") | |
# Crisis resources for distress signals | |
crisis_keywords = ["help", "suicide", "depressed", "emergency", "hurt", "lost"] | |
if any(keyword in user_input.lower() for keyword in crisis_keywords): | |
st.warning("It seems like you might be in distress. Please reach out to a crisis hotline or a trusted individual.") | |
st.write("[Find emergency resources here](https://www.helpguide.org/find-help.htm)") | |