CompanAIon / app.py
Bey007's picture
Update app.py
d2a9917 verified
raw
history blame
3.28 kB
import streamlit as st
from transformers import GPT2LMHeadModel, GPT2Tokenizer
from gtts import gTTS
import torch
# Load GPT-2 model and tokenizer from Hugging Face
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")
# Set up Streamlit page configuration
st.set_page_config(page_title="Grief and Loss Support Bot", page_icon="🌿", layout="centered")
st.markdown("""
<style>
.css-1d391kg { background-color: #F3F7F6; }
.css-ffhzg2 { font-size: 1.5em; font-weight: 500; color: #4C6D7D; }
.stTextInput>div>div>input { background-color: #D8E3E2; }
.stButton>button { background-color: #A9D0B6; color: white; border-radius: 5px; }
.stButton>button:hover { background-color: #8FB79A; }
.stTextInput>div>label { color: #4C6D7D; }
</style>
""", unsafe_allow_html=True)
# Title and introduction to the bot
st.title("Grief and Loss Support Bot 🌿")
st.subheader("Your compassionate companion in tough times πŸ’š")
# User input
user_input = st.text_input("Share what's on your mind...", placeholder="Type here...", max_chars=500)
# Store previous responses to check for repetition
if 'previous_responses' not in st.session_state:
st.session_state.previous_responses = []
# Function to generate a more empathetic and focused response
def generate_response(user_input):
# Tokenize input and set parameters for text generation
inputs = tokenizer.encode(user_input, return_tensors="pt")
outputs = model.generate(
inputs,
max_length=200,
temperature=0.8,
top_k=50,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id
)
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Add a suggestion for coping activity based on keywords in user input
if "angry" in user_input.lower() or "frustrated" in user_input.lower():
activity_suggestion = (
"Sometimes, deep breathing exercises can help calm your mind. "
"Try taking slow, deep breaths to regain a sense of calm and focus."
)
elif "sad" in user_input.lower() or "lonely" in user_input.lower():
activity_suggestion = (
"Writing about your feelings can be very therapeutic. "
"Try journaling as a way to process and release some of your emotions."
)
else:
activity_suggestion = (
"Finding a creative outlet like drawing or painting can help. "
"Art is a way to express feelings that might be difficult to put into words."
)
# Append the activity suggestion to the generated response
response = f"{response_text}\n\nHere's something you could try to help cope with how you're feeling:\n{activity_suggestion}"
return response
# Check if the user has typed something
if user_input:
# Generate the empathetic response
response = generate_response(user_input)
# Store and show the new response
st.session_state.previous_responses.append(response)
st.text_area("Bot's Response:", response, height=250)
# Text-to-speech output (optional)
tts = gTTS(response, lang='en')
audio_file = "response.mp3"
tts.save(audio_file)
st.audio(audio_file, format="audio/mp3")