Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -36,11 +36,10 @@ def generate_story(theme):
|
|
36 |
return story
|
37 |
|
38 |
|
39 |
-
# Function to generate an empathetic response
|
40 |
def generate_response(user_input):
|
41 |
-
response_prompt = f"You are a compassionate support bot. A user has shared: '{user_input}'. Respond with empathy and
|
42 |
-
input_ids =
|
43 |
-
|
44 |
input_ids,
|
45 |
max_length=300,
|
46 |
temperature=0.85,
|
@@ -48,10 +47,11 @@ def generate_response(user_input):
|
|
48 |
repetition_penalty=1.2,
|
49 |
num_return_sequences=1
|
50 |
)
|
51 |
-
response =
|
52 |
return response
|
53 |
|
54 |
|
|
|
55 |
# Analyze user input for emotional tone
|
56 |
def get_emotion(user_input):
|
57 |
emotions = emotion_classifier(user_input)
|
|
|
36 |
return story
|
37 |
|
38 |
|
|
|
39 |
def generate_response(user_input):
|
40 |
+
response_prompt = f"You are a compassionate, kind ,and empathetic support bot. A user has shared their feelings: '{user_input}'. Respond with empathy, encouragement, and motivation."
|
41 |
+
input_ids = gpt2_tokenizer.encode(response_prompt, return_tensors='pt')
|
42 |
+
response_ids = gpt2_model.generate(
|
43 |
input_ids,
|
44 |
max_length=300,
|
45 |
temperature=0.85,
|
|
|
47 |
repetition_penalty=1.2,
|
48 |
num_return_sequences=1
|
49 |
)
|
50 |
+
response = gpt2_tokenizer.decode(response_ids[0], skip_special_tokens=True)
|
51 |
return response
|
52 |
|
53 |
|
54 |
+
|
55 |
# Analyze user input for emotional tone
|
56 |
def get_emotion(user_input):
|
57 |
emotions = emotion_classifier(user_input)
|