Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ from gtts import gTTS
|
|
4 |
from pytube import Search
|
5 |
import random
|
6 |
import os
|
7 |
-
import time
|
8 |
|
9 |
# Load pretrained models
|
10 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
@@ -13,31 +12,57 @@ emotion_classifier = pipeline("text-classification", model="bhadresh-savani/dist
|
|
13 |
|
14 |
# Function to generate a comforting story using the pretrained model
|
15 |
def generate_story(theme):
|
16 |
-
|
17 |
-
story_prompt = f"Tell me a detailed, comforting, and heartwarming story about {theme}. The story should include a character facing a tough challenge, showing immense courage, and ultimately overcoming it with a positive resolution. Include specific moments of struggle and inspiration."
|
18 |
input_ids = tokenizer.encode(story_prompt, return_tensors='pt')
|
19 |
story_ids = model.generate(
|
20 |
input_ids,
|
21 |
-
max_length=500,
|
22 |
-
temperature=0.9,
|
23 |
repetition_penalty=1.1,
|
24 |
num_return_sequences=1
|
25 |
)
|
26 |
-
# Decode the generated story text
|
27 |
story = tokenizer.decode(story_ids[0], skip_special_tokens=True)
|
28 |
return story
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# Streamlit page configuration
|
33 |
st.set_page_config(page_title="Grief and Loss Support Bot πΏ", page_icon="πΏ", layout="centered")
|
34 |
st.markdown("<style>.css-1d391kg { background-color: #F3F7F6; }</style>", unsafe_allow_html=True)
|
35 |
|
36 |
-
# Title and welcome text
|
37 |
st.title("Grief and Loss Support Bot πΏ")
|
38 |
st.subheader("Your compassionate companion in tough times π")
|
39 |
|
40 |
-
# Sidebar for
|
41 |
with st.sidebar:
|
42 |
st.header("π§ Guided Meditation")
|
43 |
if st.button("Play Meditation"):
|
@@ -46,7 +71,7 @@ with st.sidebar:
|
|
46 |
tts = gTTS("Take a deep breath. Relax and let go of any tension...", lang='en')
|
47 |
tts.save(meditation_audio)
|
48 |
st.audio(meditation_audio, format="audio/mp3")
|
49 |
-
|
50 |
st.header("π Short Comforting Story")
|
51 |
story_theme = st.selectbox("Choose a theme for your story:", ["courage", "healing", "hope"])
|
52 |
if st.button("Generate Story"):
|
@@ -57,37 +82,17 @@ with st.sidebar:
|
|
57 |
# User input section
|
58 |
user_input = st.text_input("Share what's on your mind...", placeholder="Type here...", max_chars=500)
|
59 |
|
|
|
60 |
if 'previous_responses' not in st.session_state:
|
61 |
st.session_state.previous_responses = []
|
62 |
if 'badges' not in st.session_state:
|
63 |
st.session_state.badges = []
|
64 |
|
65 |
-
def generate_response(user_input):
|
66 |
-
input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
|
67 |
-
chat_history_ids = model.generate(
|
68 |
-
input_ids,
|
69 |
-
max_length=350, # Increase length for more detailed responses
|
70 |
-
temperature=0.85, # Adjust temperature for creative responses
|
71 |
-
top_k=50,
|
72 |
-
repetition_penalty=1.2,
|
73 |
-
num_return_sequences=1
|
74 |
-
)
|
75 |
-
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
76 |
-
return response
|
77 |
-
|
78 |
-
|
79 |
-
# Analyze user input for emotional tone
|
80 |
-
def get_emotion(user_input):
|
81 |
-
emotions = emotion_classifier(user_input)
|
82 |
-
emotions_sorted = sorted(emotions[0], key=lambda x: x['score'], reverse=True)
|
83 |
-
return emotions_sorted[0]['label']
|
84 |
-
|
85 |
-
# Provide a response if user input is provided
|
86 |
if user_input:
|
87 |
emotion = get_emotion(user_input)
|
88 |
-
|
|
|
89 |
|
90 |
-
# Display the bot's response
|
91 |
st.session_state.previous_responses.append(response)
|
92 |
st.text_area("Bot's Response:", response, height=250)
|
93 |
|
@@ -98,28 +103,18 @@ if user_input:
|
|
98 |
st.session_state.badges.append(badge)
|
99 |
st.success(f"Congratulations! You've earned a {badge}!")
|
100 |
|
101 |
-
# Suggest
|
102 |
st.info("π¨ Try a New Activity")
|
103 |
activities = ["exercise", "yoga", "journaling", "painting", "meditation"]
|
104 |
selected_activity = st.selectbox("Pick an activity:", activities)
|
105 |
-
|
106 |
-
def fetch_youtube_videos(activity):
|
107 |
-
search = Search(f"{activity} for mental health relaxation")
|
108 |
-
search_results = search.results[:3]
|
109 |
-
videos = []
|
110 |
-
for video in search_results:
|
111 |
-
video_url = f"https://www.youtube.com/watch?v={video.video_id}"
|
112 |
-
videos.append((video.title, video_url))
|
113 |
-
return videos
|
114 |
-
|
115 |
-
if st.button("Find Videos"):
|
116 |
-
videos = fetch_youtube_videos(selected_activity)
|
117 |
-
if not videos:
|
118 |
-
st.write(f"No results found for '{selected_activity}'.")
|
119 |
-
else:
|
120 |
-
for title, url in videos:
|
121 |
-
st.write(f"[{title}]({url})")
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
# Crisis resources
|
125 |
if any(word in user_input.lower() for word in ["suicide", "help", "depressed"]):
|
@@ -133,7 +128,7 @@ if user_input:
|
|
133 |
tts.save(audio_file)
|
134 |
st.audio(audio_file, format="audio/mp3")
|
135 |
|
136 |
-
# Display badges
|
137 |
if st.session_state.badges:
|
138 |
st.sidebar.header("π
Achievements")
|
139 |
for badge in st.session_state.badges:
|
|
|
4 |
from pytube import Search
|
5 |
import random
|
6 |
import os
|
|
|
7 |
|
8 |
# Load pretrained models
|
9 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
|
|
12 |
|
13 |
# Function to generate a comforting story using the pretrained model
|
14 |
def generate_story(theme):
|
15 |
+
story_prompt = f"Tell a detailed, comforting, and heartwarming story about {theme}. Include a character facing a tough challenge, showing courage, and overcoming it with a positive resolution."
|
|
|
16 |
input_ids = tokenizer.encode(story_prompt, return_tensors='pt')
|
17 |
story_ids = model.generate(
|
18 |
input_ids,
|
19 |
+
max_length=500,
|
20 |
+
temperature=0.9,
|
21 |
repetition_penalty=1.1,
|
22 |
num_return_sequences=1
|
23 |
)
|
|
|
24 |
story = tokenizer.decode(story_ids[0], skip_special_tokens=True)
|
25 |
return story
|
26 |
|
27 |
+
# Function to generate an empathetic response
|
28 |
+
def generate_response(user_input):
|
29 |
+
response_prompt = f"You are a compassionate support bot. A user has shared: '{user_input}'. Respond with empathy and encouragement."
|
30 |
+
input_ids = tokenizer.encode(response_prompt, return_tensors='pt')
|
31 |
+
chat_history_ids = model.generate(
|
32 |
+
input_ids,
|
33 |
+
max_length=300,
|
34 |
+
temperature=0.85,
|
35 |
+
top_k=50,
|
36 |
+
repetition_penalty=1.2,
|
37 |
+
num_return_sequences=1
|
38 |
+
)
|
39 |
+
response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
|
40 |
+
return response
|
41 |
+
|
42 |
+
# Analyze user input for emotional tone
|
43 |
+
def get_emotion(user_input):
|
44 |
+
emotions = emotion_classifier(user_input)
|
45 |
+
emotions_sorted = sorted(emotions[0], key=lambda x: x['score'], reverse=True)
|
46 |
+
return emotions_sorted[0]['label']
|
47 |
|
48 |
+
# Function to fetch YouTube videos
|
49 |
+
def fetch_youtube_videos(activity):
|
50 |
+
search = Search(f"{activity} for mental health relaxation")
|
51 |
+
search_results = search.results[:3]
|
52 |
+
videos = []
|
53 |
+
for video in search_results:
|
54 |
+
video_url = f"https://www.youtube.com/watch?v={video.video_id}"
|
55 |
+
videos.append((video.title, video_url))
|
56 |
+
return videos
|
57 |
|
58 |
# Streamlit page configuration
|
59 |
st.set_page_config(page_title="Grief and Loss Support Bot πΏ", page_icon="πΏ", layout="centered")
|
60 |
st.markdown("<style>.css-1d391kg { background-color: #F3F7F6; }</style>", unsafe_allow_html=True)
|
61 |
|
|
|
62 |
st.title("Grief and Loss Support Bot πΏ")
|
63 |
st.subheader("Your compassionate companion in tough times π")
|
64 |
|
65 |
+
# Sidebar for Meditation and Story Generation
|
66 |
with st.sidebar:
|
67 |
st.header("π§ Guided Meditation")
|
68 |
if st.button("Play Meditation"):
|
|
|
71 |
tts = gTTS("Take a deep breath. Relax and let go of any tension...", lang='en')
|
72 |
tts.save(meditation_audio)
|
73 |
st.audio(meditation_audio, format="audio/mp3")
|
74 |
+
|
75 |
st.header("π Short Comforting Story")
|
76 |
story_theme = st.selectbox("Choose a theme for your story:", ["courage", "healing", "hope"])
|
77 |
if st.button("Generate Story"):
|
|
|
82 |
# User input section
|
83 |
user_input = st.text_input("Share what's on your mind...", placeholder="Type here...", max_chars=500)
|
84 |
|
85 |
+
# Initialize session state
|
86 |
if 'previous_responses' not in st.session_state:
|
87 |
st.session_state.previous_responses = []
|
88 |
if 'badges' not in st.session_state:
|
89 |
st.session_state.badges = []
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
if user_input:
|
92 |
emotion = get_emotion(user_input)
|
93 |
+
with st.spinner("Thinking..."):
|
94 |
+
response = generate_response(user_input)
|
95 |
|
|
|
96 |
st.session_state.previous_responses.append(response)
|
97 |
st.text_area("Bot's Response:", response, height=250)
|
98 |
|
|
|
103 |
st.session_state.badges.append(badge)
|
104 |
st.success(f"Congratulations! You've earned a {badge}!")
|
105 |
|
106 |
+
# Suggest activities
|
107 |
st.info("π¨ Try a New Activity")
|
108 |
activities = ["exercise", "yoga", "journaling", "painting", "meditation"]
|
109 |
selected_activity = st.selectbox("Pick an activity:", activities)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
if st.button("Find Videos"):
|
112 |
+
videos = fetch_youtube_videos(selected_activity)
|
113 |
+
if videos:
|
114 |
+
for title, url in videos:
|
115 |
+
st.write(f"[{title}]({url})")
|
116 |
+
else:
|
117 |
+
st.write(f"No results found for '{selected_activity}'.")
|
118 |
|
119 |
# Crisis resources
|
120 |
if any(word in user_input.lower() for word in ["suicide", "help", "depressed"]):
|
|
|
128 |
tts.save(audio_file)
|
129 |
st.audio(audio_file, format="audio/mp3")
|
130 |
|
131 |
+
# Display badges
|
132 |
if st.session_state.badges:
|
133 |
st.sidebar.header("π
Achievements")
|
134 |
for badge in st.session_state.badges:
|