Bey007 commited on
Commit
f856069
·
verified ·
1 Parent(s): e4ed003

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -151
app.py CHANGED
@@ -1,50 +1,13 @@
1
- import streamlit as st
2
- from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
- from gtts import gTTS
4
- from pytube import Search
5
- import random
6
- import os
7
-
8
- # Load pretrained models
9
- tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
10
- model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
11
- # Load GPT-2 model and tokenizer for story generation
12
- gpt2_tokenizer = AutoTokenizer.from_pretrained("gpt2-medium")
13
- gpt2_model = AutoModelForCausalLM.from_pretrained("gpt2-medium")
14
-
15
- emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", return_all_scores=True)
16
-
17
- # Function to generate a comforting story using GPT-2
18
- def generate_story(theme):
19
- # A detailed prompt for generating a comforting story about the selected theme
20
- story_prompt = f"Write a comforting, detailed, and heartwarming story about {theme}. The story should include a character who faces a tough challenge, finds hope, and ultimately overcomes the situation with a positive resolution."
21
-
22
- # Generate story using GPT-2
23
- input_ids = gpt2_tokenizer.encode(story_prompt, return_tensors='pt')
24
-
25
- story_ids = gpt2_model.generate(
26
- input_ids,
27
- max_length=500, # Generate longer stories
28
- temperature=0.8, # Balanced creativity
29
- top_p=0.9,
30
- repetition_penalty=1.2,
31
- num_return_sequences=1
32
- )
33
-
34
- # Decode the generated text
35
- story = gpt2_tokenizer.decode(story_ids[0], skip_special_tokens=True)
36
- return story
37
-
38
  def generate_response(user_input):
39
- # Refined prompt with a clear and empathetic tone
40
- response_prompt = f"You are a kind and empathetic support bot. A user is sharing their feelings: '{user_input}'. Respond with kindness and empathy, offering emotional validation. Keep the tone soft and comforting, and avoid any philosophical or unrelated explanations. Offer support and let them know that their feelings are valid."
41
 
42
  # Generate the response using the GPT-2 model
43
  input_ids = gpt2_tokenizer.encode(response_prompt, return_tensors='pt')
44
  response_ids = gpt2_model.generate(
45
  input_ids,
46
  max_length=300,
47
- temperature=0.8,
48
  top_k=50,
49
  repetition_penalty=1.2,
50
  num_return_sequences=1
@@ -54,116 +17,6 @@ def generate_response(user_input):
54
  response = gpt2_tokenizer.decode(response_ids[0], skip_special_tokens=True)
55
 
56
  # Strip out the prompt portion to get a clean, empathetic message
57
- cleaned_response = response.replace(f"You are a kind and empathetic support bot. A user is sharing their feelings: '{user_input}'. Respond with kindness and empathy, offering emotional validation. Keep the tone soft and comforting, and avoid any philosophical or unrelated explanations. Offer support and let them know that their feelings are valid.", "").strip()
58
 
59
  return cleaned_response
60
-
61
-
62
-
63
- # Analyze user input for emotional tone
64
- def get_emotion(user_input):
65
- emotions = emotion_classifier(user_input)
66
- emotions_sorted = sorted(emotions[0], key=lambda x: x['score'], reverse=True)
67
- return emotions_sorted[0]['label']
68
-
69
- # Function to fetch YouTube videos
70
- def fetch_youtube_videos(activity):
71
- search = Search(f"{activity} for mental health relaxation")
72
- search_results = search.results[:3]
73
- videos = []
74
- for video in search_results:
75
- video_url = f"https://www.youtube.com/watch?v={video.video_id}"
76
- videos.append((video.title, video_url))
77
- return videos
78
-
79
- # Streamlit page configuration
80
- st.set_page_config(page_title="Grief and Loss Support Bot 🌿", page_icon="🌿", layout="centered")
81
- st.markdown("<style>.css-1d391kg { background-color: #F3F7F6; }</style>", unsafe_allow_html=True)
82
-
83
- st.title("Grief and Loss Support Bot 🌿")
84
- st.subheader("Your compassionate companion in tough times 💚")
85
-
86
- # Sidebar for Meditation and Story Generation
87
- with st.sidebar:
88
- st.header("🧘 Guided Meditation")
89
- if st.button("Play Meditation"):
90
- meditation_audio = "meditation.mp3"
91
- if not os.path.exists(meditation_audio):
92
- tts = gTTS("Take a deep breath. Relax and let go of any tension...", lang='en')
93
- tts.save(meditation_audio)
94
- st.audio(meditation_audio, format="audio/mp3")
95
-
96
- # Generating a comforting story
97
- st.sidebar.header("📖 Short Comforting Story")
98
- story_theme = st.selectbox("Choose a theme for your story:", ["courage", "healing", "hope"])
99
- if st.sidebar.button("Generate Story"):
100
- with st.spinner("Generating your story..."):
101
- story = generate_story(story_theme)
102
- st.text_area("Here's your story:", story, height=300)
103
-
104
-
105
-
106
- # User input section
107
- user_input = st.text_input("Share what's on your mind. I am here to listen...", placeholder="Type here...", max_chars=500, key="user_input_1")
108
-
109
-
110
- # Initialize session state
111
- if 'previous_responses' not in st.session_state:
112
- st.session_state.previous_responses = []
113
- if 'badges' not in st.session_state:
114
- st.session_state.badges = []
115
-
116
-
117
- # Initialize session state
118
- if 'badges' not in st.session_state:
119
- st.session_state.badges = []
120
-
121
- if user_input:
122
- with st.spinner("Analyzing your input..."):
123
- # Get the emotion of the user input
124
- emotion = get_emotion(user_input)
125
-
126
- # Generate an empathetic response
127
- response = generate_response(user_input)
128
-
129
- # Display the bot's response
130
- st.text_area("Bot's Response:", response, height=250)
131
-
132
- # Assign badges based on the detected emotion
133
- if emotion in ["joy", "optimism"]:
134
- badge = "🌟 Positivity Badge"
135
- if badge not in st.session_state.badges:
136
- st.session_state.badges.append(badge)
137
- st.success(f"Congratulations! You've earned a {badge}!")
138
-
139
- # Suggest activities based on emotion
140
- st.info("🎨 Try a New Activity")
141
- activities = ["exercise", "yoga", "journaling", "painting", "meditation", "swimming"]
142
- selected_activity = st.selectbox("Pick an activity:", activities)
143
-
144
- if st.button("Find Videos"):
145
- videos = fetch_youtube_videos(selected_activity)
146
- if videos:
147
- for title, url in videos:
148
- st.write(f"[{title}]({url})")
149
- else:
150
- st.write(f"No results found for '{selected_activity}'.")
151
-
152
- # Crisis resources
153
- if user_input and any(word in user_input.lower() for word in ["suicide", "help", "depressed"]):
154
- st.warning("Please reach out to a crisis hotline for immediate support.")
155
- st.write("[Find emergency resources here](https://www.helpguide.org/find-help.htm)")
156
-
157
-
158
- # Generate audio response
159
- if user_input:
160
- tts = gTTS(response, lang='en')
161
- audio_file = "response.mp3"
162
- tts.save(audio_file)
163
- st.audio(audio_file, format="audio/mp3")
164
-
165
- # Display badgesz
166
- if st.session_state.badges:
167
- st.sidebar.header("🏅 Achievements")
168
- for badge in st.session_state.badges:
169
- st.sidebar.write(badge)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  def generate_response(user_input):
2
+ # Empathy-focused prompt to guide the bot
3
+ response_prompt = f"The user has shared the following: '{user_input}'. Respond with empathy, compassion, and understanding. Acknowledge their sadness and offer comforting, reassuring words. Show that you care and validate their feelings without giving unsolicited advice."
4
 
5
  # Generate the response using the GPT-2 model
6
  input_ids = gpt2_tokenizer.encode(response_prompt, return_tensors='pt')
7
  response_ids = gpt2_model.generate(
8
  input_ids,
9
  max_length=300,
10
+ temperature=0.85,
11
  top_k=50,
12
  repetition_penalty=1.2,
13
  num_return_sequences=1
 
17
  response = gpt2_tokenizer.decode(response_ids[0], skip_special_tokens=True)
18
 
19
  # Strip out the prompt portion to get a clean, empathetic message
20
+ cleaned_response = response.replace(f"The user has shared the following: '{user_input}'. Respond with empathy, compassion, and understanding. Acknowledge their sadness and offer comforting, reassuring words. Show that you care and validate their feelings without giving unsolicited advice.", "").strip()
21
 
22
  return cleaned_response