import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from gtts import gTTS from pytube import Search import random import os # Load pretrained models tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") # Load GPT-2 model and tokenizer for story generation gpt2_tokenizer = AutoTokenizer.from_pretrained("gpt2-medium") gpt2_model = AutoModelForCausalLM.from_pretrained("gpt2-medium") emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", return_all_scores=True) # Function to generate a comforting story using GPT-2 def generate_story(theme): # A detailed prompt for generating a comforting story about the selected theme story_prompt = f"Write a comforting, detailed, and heartwarming story about {theme}. The story should include a character who faces a tough challenge, finds hope, and ultimately overcomes the situation with a positive resolution." # Generate story using GPT-2 input_ids = gpt2_tokenizer.encode(story_prompt, return_tensors='pt') story_ids = gpt2_model.generate( input_ids, max_length=500, # Generate longer stories temperature=0.7, # Balanced creativity top_p=0.9, repetition_penalty=1.2, num_return_sequences=1 ) # Decode the generated text story = gpt2_tokenizer.decode(story_ids[0], skip_special_tokens=True) return story def generate_response(user_input): # Refined prompt with a clear and empathetic tone response_prompt = f"You are a kind and empathetic support bot. A user is sharing their feelings: '{user_input}'. Respond with kindness and empathy, offering emotional validation. Keep the tone soft and comforting, and avoid any philosophical or unrelated explanations. Offer support and let them know that their feelings are valid." # Generate the response using the GPT-2 model input_ids = gpt2_tokenizer.encode(response_prompt, return_tensors='pt') response_ids = gpt2_model.generate( input_ids, max_length=300, temperature=0.85, top_k=50, repetition_penalty=1.2, num_return_sequences=1 ) # Decode the response and clean it up by removing the prompt response = gpt2_tokenizer.decode(response_ids[0], skip_special_tokens=True) # Strip out the prompt portion to get a clean, empathetic message cleaned_response = response.replace(f"You are a kind and empathetic support bot. A user is sharing their feelings: '{user_input}'. Respond with kindness and empathy, offering emotional validation. Keep the tone soft and comforting, and avoid any philosophical or unrelated explanations. Offer support and let them know that their feelings are valid.", "").strip() return cleaned_response # Analyze user input for emotional tone def get_emotion(user_input): emotions = emotion_classifier(user_input) emotions_sorted = sorted(emotions[0], key=lambda x: x['score'], reverse=True) return emotions_sorted[0]['label'] # Function to fetch YouTube videos def fetch_youtube_videos(activity): search = Search(f"{activity} for mental health relaxation") search_results = search.results[:3] videos = [] for video in search_results: video_url = f"https://www.youtube.com/watch?v={video.video_id}" videos.append((video.title, video_url)) return videos # Streamlit page configuration st.set_page_config(page_title="Grief and Loss Support Bot 🌿", page_icon="🌿", layout="centered") st.markdown("", unsafe_allow_html=True) st.title("Grief and Loss Support Bot 🌿") st.subheader("Your compassionate companion in tough times 💚") # Sidebar for Meditation and Story Generation with st.sidebar: st.header("🧘 Guided Meditation") if st.button("Play Meditation"): meditation_audio = "meditation.mp3" if not os.path.exists(meditation_audio): tts = gTTS("Take a deep breath. Relax and let go of any tension...", lang='en') tts.save(meditation_audio) st.audio(meditation_audio, format="audio/mp3") # Generating a comforting story st.sidebar.header("📖 Short Comforting Story") story_theme = st.selectbox("Choose a theme for your story:", ["courage", "healing", "hope"]) if st.sidebar.button("Generate Story"): with st.spinner("Generating your story..."): story = generate_story(story_theme) st.text_area("Here's your story:", story, height=300) # User input section user_input = st.text_input("Share what's on your mind. I am here to listen...", placeholder="Type here...", max_chars=500, key="user_input_1") # Initialize session state if 'previous_responses' not in st.session_state: st.session_state.previous_responses = [] if 'badges' not in st.session_state: st.session_state.badges = [] # Initialize session state if 'badges' not in st.session_state: st.session_state.badges = [] if user_input: with st.spinner("Analyzing your input..."): # Get the emotion of the user input emotion = get_emotion(user_input) # Generate an empathetic response response = generate_response(user_input) # Display the bot's response st.text_area("Bot's Response:", response, height=250) # Assign badges based on the detected emotion if emotion in ["joy", "optimism"]: badge = "🌟 Positivity Badge" if badge not in st.session_state.badges: st.session_state.badges.append(badge) st.success(f"Congratulations! You've earned a {badge}!") # Suggest activities based on emotion st.info("🎨 Try a New Activity") activities = ["exercise", "yoga", "journaling", "painting", "meditation", "swimming"] selected_activity = st.selectbox("Pick an activity:", activities) if st.button("Find Videos"): videos = fetch_youtube_videos(selected_activity) if videos: for title, url in videos: st.write(f"[{title}]({url})") else: st.write(f"No results found for '{selected_activity}'.") # Crisis resources if user_input and any(word in user_input.lower() for word in ["suicide", "help", "depressed"]): st.warning("Please reach out to a crisis hotline for immediate support.") st.write("[Find emergency resources here](https://www.helpguide.org/find-help.htm)") # Generate audio response if user_input: tts = gTTS(response, lang='en') audio_file = "response.mp3" tts.save(audio_file) st.audio(audio_file, format="audio/mp3") # Display badgesz if st.session_state.badges: st.sidebar.header("🏅 Achievements") for badge in st.session_state.badges: st.sidebar.write(badge)