import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from gtts import gTTS from pytube import Search import random import os import time # Load pretrained models tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", return_all_scores=True) # Streamlit page configuration st.set_page_config(page_title="Grief and Loss Support Bot 🌿", page_icon="🌿", layout="centered") st.markdown("", unsafe_allow_html=True) # Title and welcome text st.title("Grief and Loss Support Bot 🌿") st.subheader("Your compassionate companion in tough times 💚") # Sidebar for additional features with st.sidebar: st.header("🧘 Guided Meditation") if st.button("Play Meditation"): meditation_audio = "meditation.mp3" if not os.path.exists(meditation_audio): tts = gTTS("Take a deep breath. Relax and let go of any tension...", lang='en') tts.save(meditation_audio) st.audio(meditation_audio, format="audio/mp3") st.header("📖 Short Comforting Story") story_theme = st.selectbox("Choose a theme for your story:", ["courage", "healing", "hope"]) if st.button("Generate Story"): story_prompt = f"Tell me a comforting story about {story_theme}." input_ids = tokenizer.encode(story_prompt, return_tensors='pt') story_ids = model.generate(input_ids, max_length=150, temperature=0.8, repetition_penalty=1.1) story = tokenizer.decode(story_ids[0], skip_special_tokens=True) st.text_area("Here's your story:", story, height=200) # User input section user_input = st.text_input("Share what's on your mind...", placeholder="Type here...", max_chars=500) if 'previous_responses' not in st.session_state: st.session_state.previous_responses = [] if 'badges' not in st.session_state: st.session_state.badges = [] # Generate empathetic response def generate_response(user_input): input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt') chat_history_ids = model.generate(input_ids, max_length=150, temperature=0.7, top_k=50, repetition_penalty=1.2) response = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True) return response # Analyze user input for emotional tone def get_emotion(user_input): emotions = emotion_classifier(user_input) emotions_sorted = sorted(emotions[0], key=lambda x: x['score'], reverse=True) return emotions_sorted[0]['label'] # Provide a response if user input is provided if user_input: emotion = get_emotion(user_input) response = generate_response(user_input) # Display the bot's response st.session_state.previous_responses.append(response) st.text_area("Bot's Response:", response, height=250) # Assign motivational badges if emotion in ["joy", "optimism"]: badge = "🌟 Positivity Badge" if badge not in st.session_state.badges: st.session_state.badges.append(badge) st.success(f"Congratulations! You've earned a {badge}!") # Suggest coping activities st.info("🎨 Try a New Activity") activities = ["exercise", "yoga", "journaling", "painting", "meditation"] selected_activity = st.selectbox("Pick an activity:", activities) # Fetch YouTube video suggestions if st.button("Find Videos"): search = Search(selected_activity) search_results = search.results[:3] if not search_results: st.write(f"No results found for '{selected_activity}'.") else: for video in search_results: st.write(f"[{video.title}]({video.watch_url})") # Crisis resources if any(word in user_input.lower() for word in ["suicide", "help", "depressed"]): st.warning("Please reach out to a crisis hotline for immediate support.") st.write("[Find emergency resources here](https://www.helpguide.org/find-help.htm)") # Generate audio response tts = gTTS(response, lang='en') audio_file = "response.mp3" tts.save(audio_file) st.audio(audio_file, format="audio/mp3") # Display badges and achievements if st.session_state.badges: st.sidebar.header("🏅 Achievements") for badge in st.session_state.badges: st.sidebar.write(badge)