Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +84 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Car_predict.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1ydYFB1nlbvDcEQ4QKJFLLlV9JAhiinwU
|
8 |
+
|
9 |
+
# Car Prediction
|
10 |
+
"""
|
11 |
+
|
12 |
+
import pandas as pd
|
13 |
+
from sklearn.model_selection import train_test_split
|
14 |
+
from sklearn.linear_model import LinearRegression
|
15 |
+
from sklearn.metrics import r2_score, mean_squared_error
|
16 |
+
from sklearn.compose import ColumnTransformer
|
17 |
+
from sklearn.preprocessing import OneHotEncoder, StandardScaler
|
18 |
+
from sklearn.pipeline import Pipeline
|
19 |
+
|
20 |
+
# pip install xlrd
|
21 |
+
|
22 |
+
ls
|
23 |
+
|
24 |
+
df=pd.read_excel("cars.xls")
|
25 |
+
df
|
26 |
+
|
27 |
+
df.info()
|
28 |
+
|
29 |
+
"""## Veri Ön işleme"""
|
30 |
+
|
31 |
+
X = df.drop("Price", axis=1)
|
32 |
+
y=df["Price"]
|
33 |
+
|
34 |
+
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=42)
|
35 |
+
|
36 |
+
preprocess = ColumnTransformer(transformers=[("num",StandardScaler(),["Mileage","Cylinder","Liter","Doors"]),
|
37 |
+
("cat",OneHotEncoder(),["Make","Model","Trim","Type"])])
|
38 |
+
|
39 |
+
my_model = LinearRegression()
|
40 |
+
|
41 |
+
# Pipeline tanımla
|
42 |
+
pipe = Pipeline(steps=[("preprocessor",preprocess),("model",my_model)])
|
43 |
+
|
44 |
+
pipe.fit(X_train,y_train)
|
45 |
+
|
46 |
+
y_pred=pipe.predict(X_test)
|
47 |
+
print("RMSE",mean_squared_error(y_test,y_pred)**0.5)
|
48 |
+
print("R2",r2_score(y_test,y_pred))
|
49 |
+
|
50 |
+
# pip install streamlit
|
51 |
+
|
52 |
+
import streamlit as st
|
53 |
+
def price(make,model,trim,milage,car_type,cylinder,liter,doors,cruise,sound,leather):
|
54 |
+
input_data=pd.DataFrame({'Make':[make],
|
55 |
+
'Model':[model],
|
56 |
+
'Trim':[trim],
|
57 |
+
'Mileage':[mileage],
|
58 |
+
'Type':[car_type],
|
59 |
+
'Cylinder':[cylinder],
|
60 |
+
'Liter':[liter],
|
61 |
+
'Doors':[doors],
|
62 |
+
'Cruise':[cruise],
|
63 |
+
'Sound':[sound],
|
64 |
+
'Leather':[leather]})
|
65 |
+
prediction=pipe.predict(input_data)[0]
|
66 |
+
return prediction
|
67 |
+
|
68 |
+
st.title("2. El Araba Fiyat Tahmin @Beyza Nur Sarıkaya")
|
69 |
+
st.write("Arabanın öselliklerini seçiniz")
|
70 |
+
make=st.selectbox('Marka',df['Make'].unique())
|
71 |
+
model=st.selectbox('Model',df[df['Make']==make]['Model'].unique())
|
72 |
+
trim=st.selectbox('Trim',df[(df['Make']==make) &(df['Model']==model)]['Trim'].unique())
|
73 |
+
mileage=st.number_input('Kilometre',100,200000)
|
74 |
+
car_type=st.selectbox('Araç Tipi',df[(df['Make']==make) &(df['Model']==model)&(df['Trim']==trim)]['Type'].unique())
|
75 |
+
cylinder=st.selectbox('Cylinder',df['Cylinder'].unique())
|
76 |
+
liter=st.number_input('Motor hacmi',1,10)
|
77 |
+
doors=st.selectbox('Kapı sayısı',df['Doors'].unique())
|
78 |
+
cruise=st.radio('Hız Sbt.',[True,False])
|
79 |
+
sound=st.radio('Ses Sis.',[True,False])
|
80 |
+
leather=st.radio('Deri döşeme.',[True,False])
|
81 |
+
if st.button('Tahmin'):
|
82 |
+
pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
|
83 |
+
st.write('Fiyat:$', round(pred[0],2))
|
84 |
+
|
requirements.txt
ADDED
Binary file (150 Bytes). View file
|
|