BeyzaS commited on
Commit
6120a63
·
verified ·
1 Parent(s): 9bd2c32

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -61
app.py CHANGED
@@ -1,84 +1,87 @@
1
- # -*- coding: utf-8 -*-
2
- """Car_predict.ipynb
3
 
4
- Automatically generated by Colab.
5
 
6
- Original file is located at
7
- https://colab.research.google.com/drive/1ydYFB1nlbvDcEQ4QKJFLLlV9JAhiinwU
8
-
9
- # Car Prediction
10
- """
11
 
 
12
  import pandas as pd
13
  from sklearn.model_selection import train_test_split
14
  from sklearn.linear_model import LinearRegression
15
- from sklearn.metrics import r2_score, mean_squared_error
16
- from sklearn.compose import ColumnTransformer
17
- from sklearn.preprocessing import OneHotEncoder, StandardScaler
18
  from sklearn.pipeline import Pipeline
 
 
19
 
20
- # pip install xlrd
21
 
22
- # ls
23
 
24
- df=pd.read_excel("cars.xls")
25
- # df
26
 
27
- # df.info()
28
 
29
- """## Veri Ön işleme"""
30
 
31
- X = df.drop("Price", axis=1)
32
- y=df["Price"]
33
 
34
- X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=42)
35
 
36
- preprocess = ColumnTransformer(transformers=[("num",StandardScaler(),["Mileage","Cylinder","Liter","Doors"]),
37
- ("cat",OneHotEncoder(),["Make","Model","Trim","Type"])])
38
 
39
- my_model = LinearRegression()
40
 
41
- # Pipeline tanımla
42
- pipe = Pipeline(steps=[("preprocessor",preprocess),("model",my_model)])
 
 
 
 
 
 
43
 
44
- pipe.fit(X_train,y_train)
45
 
46
- y_pred=pipe.predict(X_test)
47
- print("RMSE",mean_squared_error(y_test,y_pred)**0.5)
48
- print("R2",r2_score(y_test,y_pred))
49
 
50
- # pip install streamlit
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  import streamlit as st
53
  def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather):
54
- input_data=pd.DataFrame({'Make':[make],
55
- 'Model':[model],
56
- 'Trim':[trim],
57
- 'Mileage':[mileage],
58
- 'Type':[car_type],
59
- 'Cylinder':[cylinder],
60
- 'Liter':[liter],
61
- 'Doors':[doors],
62
- 'Cruise':[cruise],
63
- 'Sound':[sound],
64
- 'Leather':[leather]})
65
- prediction=pipe.predict(input_data)[0]
66
- return prediction
67
-
68
- st.title("2. El Araba Fiyat Tahmin @Beyza Nur Sarıkaya")
69
- st.write("Arabanın öselliklerini seçiniz")
70
- make=st.selectbox('Marka',df['Make'].unique())
71
- model=st.selectbox('Model',df[df['Make']==make]['Model'].unique())
72
- trim=st.selectbox('Trim',df[(df['Make']==make) &(df['Model']==model)]['Trim'].unique())
73
- mileage=st.number_input('Kilometre',100,200000)
74
- car_type=st.selectbox('Araç Tipi',df[(df['Make']==make) &(df['Model']==model)&(df['Trim']==trim)]['Type'].unique())
75
- cylinder=st.selectbox('Cylinder',df['Cylinder'].unique())
76
- liter=st.number_input('Motor hacmi',1,10)
77
- doors=st.selectbox('Kapı sayısı',df['Doors'].unique())
78
- cruise=st.radio('Hız Sbt.',[True,False])
79
- sound=st.radio('Ses Sis.',[True,False])
80
- leather=st.radio('Deri döşeme.',[True,False])
81
- if st.button('Tahmin'):
82
- pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
83
- st.write("Predicted Price :red_car: $",round(pred[0],2))
84
-
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding: utf-8
3
 
4
+ # # Araba Fiyatı Tahmin Eden Model ve Deployment
5
 
 
 
 
 
 
6
 
7
+ #import libraries
8
  import pandas as pd
9
  from sklearn.model_selection import train_test_split
10
  from sklearn.linear_model import LinearRegression
11
+ from sklearn.metrics import r2_score,mean_squared_error
 
 
12
  from sklearn.pipeline import Pipeline
13
+ from sklearn.compose import ColumnTransformer
14
+ from sklearn.preprocessing import StandardScaler,OneHotEncoder
15
 
 
16
 
 
17
 
18
+ #Load data
19
+ df=pd.read_excel('cars.xls')
20
 
 
21
 
 
22
 
 
 
23
 
 
24
 
 
 
25
 
 
26
 
27
+ X=df.drop('Price',axis=1)
28
+ y=df[['Price']]
29
+
30
+
31
+
32
+ X_train,X_test,y_train,y_test=train_test_split(X,y,
33
+ test_size=0.2,
34
+ random_state=42)
35
 
 
36
 
 
 
 
37
 
38
+
39
+ preproccer=ColumnTransformer(transformers=[('num',StandardScaler(),
40
+ ['Mileage','Cylinder','Liter','Doors']),
41
+ ('cat',OneHotEncoder(),['Make','Model','Trim','Type'])])
42
+
43
+
44
+
45
+
46
+ model=LinearRegression()
47
+ pipe=Pipeline(steps=[('preprocessor',preproccer),
48
+ ('model',model)])
49
+ pipe.fit(X_train,y_train)
50
+ y_pred=pipe.predict(X_test)
51
+ mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred)
52
 
53
  import streamlit as st
54
  def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather):
55
+ input_data=pd.DataFrame({
56
+ 'Make':[make],
57
+ 'Model':[model],
58
+ 'Trim':[trim],
59
+ 'Mileage':[mileage],
60
+ 'Type':[car_type],
61
+ 'Car_type':[car_type],
62
+ 'Cylinder':[cylinder],
63
+ 'Liter':[liter],
64
+ 'Doors':[doors],
65
+ 'Cruise':[cruise],
66
+ 'Sound':[sound],
67
+ 'Leather':[leather]
68
+ })
69
+ prediction=pipe.predict(input_data)[0]
70
+ return prediction
71
+ st.title("Araba Fiyatı Tahmin :red_car: @Beyza Nur Sarıkaya")
72
+ st.write("Arabanın özelliklerini seçin")
73
+ make=st.selectbox("Marka",df['Make'].unique())
74
+ model=st.selectbox("Model",df[df['Make']==make]['Model'].unique())
75
+ trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique())
76
+ mileage=st.number_input("Kilometre",200,60000)
77
+ car_type=st.selectbox("Tipi",df[(df['Make']==make) & (df['Model']==model) & (df['Trim']==trim )]['Type'].unique())
78
+ cylinder=st.selectbox("Silindir",df['Cylinder'].unique())
79
+ liter=st.number_input("Liter",1,6)
80
+ doors=st.selectbox("Kapı",df['Doors'].unique())
81
+ cruise=st.radio("Hız S.",[True,False])
82
+ sound=st.radio("Ses Sistemi",[True,False])
83
+ leather=st.radio("Deri döşeme",[True,False])
84
+ if st.button("Tahmin"):
85
+ pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
86
+
87
+ st.write("Predicted Price :red_car: $",round(pred[0],2))