File size: 12,513 Bytes
8c3e214
2c80bdd
8c3e214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72c8535
 
8c3e214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
484a648
 
8c3e214
 
 
 
 
22083e2
8c3e214
 
 
22083e2
8c3e214
 
 
 
 
 
 
 
292e068
8c3e214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e9d72d
bac0d19
8c3e214
 
 
2c80bdd
 
 
 
 
72c8535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c80bdd
 
 
 
 
72c8535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c80bdd
72c8535
 
 
 
 
 
 
8c3e214
2c80bdd
484a648
8c3e214
 
484a648
 
 
 
 
8c3e214
 
 
 
292e068
22083e2
500fc64
 
8c3e214
 
 
 
 
22083e2
8c3e214
9e00170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bac0d19
9e00170
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
from fastapi import FastAPI
#from pydantic import BaseModel

# from transformers import pipeline
from txtai.embeddings import Embeddings
from txtai.pipeline import Extractor
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter

from langchain import HuggingFaceHub
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from txtai.embeddings import Embeddings
from txtai.pipeline import Extractor

import pandas as pd
import sqlite3
import os

# NOTE - we configure docs_url to serve the interactive Docs at the root path
# of the app. This way, we can use the docs as a landing page for the app on Spaces.
app = FastAPI(docs_url="/")
# app = FastAPI()

os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"

# pipe = pipeline("text2text-generation", model="google/flan-t5-small")


# @app.get("/generate")
# def generate(text: str):
#     """
#     Using the text2text-generation pipeline from `transformers`, generate text
#     from the given input text. The model used is `google/flan-t5-small`, which
#     can be found [here](https://huggingface.co/google/flan-t5-small).
#     """
#     output = pipe(text)
#     return {"output": output[0]["generated_text"]}


def load_embeddings(
    domain: str = "",
    db_present: bool = True,
    path: str = "sentence-transformers/all-MiniLM-L6-v2",
    index_name: str = "index",
):
    # Create embeddings model with content support
    embeddings = Embeddings({"path": path, "content": True})

    # if Vector DB is not present
    if not db_present:
        return embeddings
    else:
        if domain == "":
            embeddings.load(index_name)  # change this later
        else:
            print(3)
            embeddings.load(f"{index_name}/{domain}")
        return embeddings


def _check_if_db_exists(db_path: str) -> bool:
    return os.path.exists(db_path)


def _text_splitter(doc):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=500,
        chunk_overlap=50,
        length_function=len,
    )
    return text_splitter.transform_documents(doc)


def _load_docs(path: str):
    load_doc = WebBaseLoader(path).load()
    doc = _text_splitter(load_doc)
    return doc


def _stream(dataset, limit, index: int = 0):
    for row in dataset:
        yield (index, row.page_content, None)
        index += 1

        if index >= limit:
            break


def _max_index_id(path):
    db = sqlite3.connect(path)

    table = "sections"
    df = pd.read_sql_query(f"select * from {table}", db)
    return {"max_index": df["indexid"].max()}


def _upsert_docs(doc, embeddings, vector_doc_path: str, db_present: bool):
    print(vector_doc_path)
    if db_present:
        print(1)
        max_index = _max_index_id(f"{vector_doc_path}/documents")
        print(max_index)
        embeddings.upsert(_stream(doc, 500, max_index["max_index"]))
        print("Embeddings done!!")
        embeddings.save(vector_doc_path)
        print("Embeddings done - 1!!")
    else:
        print(2)
        embeddings.index(_stream(doc, 500, 0))
        embeddings.save(vector_doc_path)
        max_index = _max_index_id(f"{vector_doc_path}/documents")
        print(max_index)
    # check
    # max_index = _max_index_id(f"{vector_doc_path}/documents")
    # print(max_index)
    return max_index


# def prompt(question):
#     return f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered.
#             Question: {question}
#             Context: """


# def search(query, question=None):
#     # Default question to query if empty
#     if not question:
#         question = query

#     return extractor([("answer", query, prompt(question), False)])[0][1]


# @app.get("/rag")
# def rag(question: str):
#     # question = "what is the document about?"
#     answer = search(question)
#     # print(question, answer)
#     return {answer}


# @app.get("/index")
# def get_url_file_path(url_path: str):
#     embeddings = load_embeddings()
#     doc = _load_docs(url_path)
#     embeddings, max_index = _upsert_docs(doc, embeddings)
#     return max_index


@app.get("/index/{domain}/")
def get_domain_file_path(domain: str, file_path: str):
    print(domain, file_path)
    print(os.getcwd())
    bool_value = _check_if_db_exists(db_path=f"{os.getcwd()}/index/{domain}/documents")
    print(bool_value)
    if bool_value:
        embeddings = load_embeddings(domain=domain, db_present=bool_value)
        print(embeddings)
        doc = _load_docs(file_path)
        max_index = _upsert_docs(
            doc=doc,
            embeddings=embeddings,
            vector_doc_path=f"{os.getcwd()}/index/{domain}",
            db_present=bool_value,
        )
        # print("-------")
    else:
        embeddings = load_embeddings(domain=domain, db_present=bool_value)
        doc = _load_docs(file_path)
        max_index = _upsert_docs(
            doc=doc,
            embeddings=embeddings,
            vector_doc_path=f"{os.getcwd()}/index/{domain}",
            db_present=bool_value,
        )
    # print("Final - output : ", max_index)
    return "Executed Successfully!!"


def _check_if_db_exists(db_path: str) -> bool:
    return os.path.exists(db_path)


def _load_embeddings_from_db(
    db_present: bool,
    domain: str,
    #path: str = "sentence-transformers/all-MiniLM-L6-v2",
    path: str = "sentence-transformers/nli-mpnet-base-v2",
):
    # Create embeddings model with content support
    embeddings = Embeddings({"path": path, "content": True})
    # if Vector DB is not present
    if not db_present:
        print("db not present")
        return embeddings
    else:
        if domain == "":
            print("domain empty")
            embeddings.load("index")  # change this later
        else:
            print(3)
            embeddings.load(f"{os.getcwd()}/index/{domain}")
        return embeddings


def _prompt(question):
    return f"""Answer the following question using only the context below. Say 'Could not find answer within the context' when the question can't be answered.
            Question: {question}
            Context: """


def _search(query, extractor, question=None):
    # Default question to query if empty
    if not question:
        question = query

    # template = f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered.
    #         Question: {question}
    #         Context: """

    # prompt = PromptTemplate(template=template, input_variables=["question"])
    # llm_chain = LLMChain(prompt=prompt, llm=extractor)

    # return {"question": question, "answer": llm_chain.run(question)}
    print(extractor([("answer", query, _prompt(question), False)]))
       
    return extractor([("answer", query, _prompt(question), False)])[0][1]


# class ModelOutputEvaluate(BaseModel):
#     question: str
#     answer: str
#     domain: str
#     context: str

class BasePromptContext:
    def __init__(self):
        self.variables_list = ["question","answer","context"]
        self.base_template = """Please act as an impartial judge and evaluate the quality of the provided answer which attempts to answer the provided question based on a provided context.
And you'll need to submit your grading for the correctness, comprehensiveness and readability of the answer, using JSON format with the 2 items in parenthesis:
("score": [your score number for the correctness of the answer], "reasoning": [your one line step by step reasoning about the correctness of the answer])
  Below is your grading rubric:
- Correctness: If the answer correctly answer the question, below are the details for different scores:
  - Score 0: the answer is completely incorrect, doesn’t mention anything about the question or is completely contrary to the correct answer.
      - For example, when asked “How to terminate a databricks cluster”, the answer is empty string, or content that’s completely irrelevant, or sorry I don’t know the answer.
  - Score 4: the answer provides some relevance to the question and answer one aspect of the question correctly.
      - Example:
          - Question: How to terminate a databricks cluster
          - Answer: Databricks cluster is a cloud-based computing environment that allows users to process big data and run distributed data processing tasks efficiently.
          - Or answer:  In the Databricks workspace, navigate to the "Clusters" tab. And then this is a hard question that I need to think more about it
  - Score 7: the answer mostly answer the question but is missing or hallucinating on one critical aspect.
      - Example:
          - Question: How to terminate a databricks cluster”
          - Answer: “In the Databricks workspace, navigate to the "Clusters" tab.
          Find the cluster you want to terminate from the list of active clusters.
          And then you’ll find a button to terminate all clusters at once”
  - Score 10: the answer correctly answer the question and not missing any major aspect
      - Example:
          - Question: How to terminate a databricks cluster
          - Answer: In the Databricks workspace, navigate to the "Clusters" tab.
          Find the cluster you want to terminate from the list of active clusters.
          Click on the down-arrow next to the cluster name to open the cluster details.
          Click on the "Terminate" button. A confirmation dialog will appear. Click "Terminate" again to confirm the action.”
Provided question:
{question}
Provided answer:
{answer}
Provided context:
{context}
Please provide your grading for the correctness and explain you gave the particular grading"""
        
        
class Evaluater:
    def __init__(self, item):
        self.question = item["question"]
        self.answer = item["answer"]
        self.domain = item["domain"]
        self.context = item["context"]
        self.llm=HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":1, "max_length":1000000})

    def get_prompt_template(self):
        prompt = BasePromptContext()
        template = prompt.base_template
        varialbles = prompt.variables_list
        eval_template = PromptTemplate(input_variables=varialbles, template=template)
        return eval_template

    def evaluate(self):
        prompt = self.get_prompt_template().format(question = self.question, answer = self.answer, context = self.context)
        score = self.llm(prompt)
        return score

# Create extractor instance
def _create_evaluation_scenario(item):
    output = {
        "input": item,
        "score" : Evaluater(item).evaluate()
    }
    return output


@app.get("/rag")
def rag(domain: str, question: str, evaluate: bool):
    print()
    db_exists = _check_if_db_exists(db_path=f"{os.getcwd()}/index/{domain}/documents")
    print(db_exists)

    bool_value = _check_if_db_exists(db_path=f"{os.getcwd()}/index/{domain}/documents")
    print(bool_value)


    # if db_exists:
    embeddings = _load_embeddings_from_db(db_exists, domain)
    # Create extractor instance
    #extractor = Extractor(embeddings, "google/flan-t5-base")
    #extractor = Extractor(embeddings, "TheBloke/Llama-2-7B-GGUF")
    print("before calling extractor")
    #extractor = Extractor(embeddings, "distilbert-base-cased-distilled-squad")
    extractor = Extractor(embeddings, "google/flan-t5-base")
    # llm = HuggingFaceHub(
    #     repo_id="google/flan-t5-xxl",
    #     model_kwargs={"temperature": 1, "max_length": 1000000},
    # )
    # else:
    print("before doing Q&A")
    answer = _search(question, extractor)
    #text = _prompt(question)
    #text += "\n" + "\n".join(x["text"] for x in embeddings.search(question))
    context_list = sorted(embeddings.search(question), key=lambda x:x['id'])
    context = "\n".join(x["text"] for x in context_list)
    scored_value = ""
    if evaluate:
        scored_value = _create_evaluation_scenario({
            "question": question,
            "answer": answer,
            "domain": domain,
            "context": context            
        })
    else:
        scored_value = {
            "input": {"question": question, "answer": answer, "domain": domain, "context": context},
            "score": "Evaluation is Turned OFF"
        }
    
    
    return {"question": question, "answer": answer, "context": context, "score": scored_value["score"]}