# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct") | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct") | |
# def respond(message, history: list[tuple[str, str]]): | |
# system_message = ( | |
# "You are a helpful and experienced coding assistant specialized in web development. " | |
# "Help the user by generating complete and functional code for building websites. " | |
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) based on their requirements. " | |
# "Break down the tasks clearly if needed, and be friendly and supportive in your responses.") | |
# max_tokens = 2048 | |
# temperature = 0.7 | |
# top_p = 0.95 | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface(respond) | |
# if __name__ == "__main__": | |
# demo.launch() | |
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct") | |
# def respond(message, history: list[tuple[str, str]]): | |
# system_message = ( | |
# "You are a helpful and experienced coding assistant specialized in web development. " | |
# "Help the user by generating complete and functional code for building websites. " | |
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) based on their requirements. " | |
# "Break down the tasks clearly if needed, and be friendly and supportive in your responses." | |
# ) | |
# max_tokens = 2048 | |
# temperature = 0.7 | |
# top_p = 0.95 | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface(respond) | |
# if __name__ == "__main__": | |
# demo.launch() | |
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# # 1. Instantiate with named model param | |
# client = InferenceClient(model="Qwen/Qwen2.5-Coder-32B-Instruct") | |
# def respond(message, history: list[tuple[str, str]]): | |
# system_message = ( | |
# "You are a helpful and experienced coding assistant specialized in web development. " | |
# "Help the user by generating complete and functional code for building websites. " | |
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) " | |
# "based on their requirements." | |
# ) | |
# max_tokens = 2048 | |
# temperature = 0.7 | |
# top_p = 0.95 | |
# # Build messages in OpenAI-compatible format | |
# messages = [{"role": "system", "content": system_message}] | |
# for user_msg, assistant_msg in history: | |
# if user_msg: | |
# messages.append({"role": "user", "content": user_msg}) | |
# if assistant_msg: | |
# messages.append({"role": "assistant", "content": assistant_msg}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# # 2. Use named parameters and alias if desired | |
# for chunk in client.chat.completions.create( | |
# model="Qwen/Qwen2.5-Coder-32B-Instruct", | |
# messages=messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# # 3. Extract token content | |
# token = chunk.choices[0].delta.content or "" | |
# response += token | |
# yield response | |
# # 4. Wire up Gradio chat interface | |
# demo = gr.ChatInterface(respond, type="messages") | |
# if __name__ == "__main__": | |
# demo.launch() | |
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# hf_token = "HF_TOKEN" | |
# # Ensure token is available | |
# if hf_token is None: | |
# raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set in .env file or environment.") | |
# # Instantiate Hugging Face Inference Client with token | |
# client = InferenceClient( | |
# model="Qwen/Qwen2.5-Coder-32B-Instruct", | |
# token=hf_token | |
# ) | |
# def respond(message, history: list[tuple[str, str]]): | |
# system_message = ( | |
# "You are a helpful and experienced coding assistant specialized in web development. " | |
# "Help the user by generating complete and functional code for building websites. " | |
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) " | |
# "based on their requirements." | |
# ) | |
# max_tokens = 2048 | |
# temperature = 0.7 | |
# top_p = 0.95 | |
# # Build conversation history | |
# messages = [{"role": "system", "content": system_message}] | |
# for user_msg, assistant_msg in history: | |
# if user_msg: | |
# messages.append({"role": "user", "content": user_msg}) | |
# if assistant_msg: | |
# messages.append({"role": "assistant", "content": assistant_msg}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# # Stream the response from the model | |
# for chunk in client.chat.completions.create( | |
# model="Qwen/Qwen2.5-Coder-32B-Instruct", | |
# messages=messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = chunk.choices[0].delta.content or "" | |
# response += token | |
# yield response | |
# # Gradio UI | |
# demo = gr.ChatInterface(respond, type="messages") | |
# if __name__ == "__main__": | |
# demo.launch() | |
# import gradio as gr | |
# from transformers import AutoTokenizer, AutoModelForCausalLM | |
# import torch | |
# # Load once globally | |
# tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-32B-Instruct") | |
# model = AutoModelForCausalLM.from_pretrained( | |
# "Qwen/Qwen2.5-Coder-32B-Instruct", | |
# device_map="auto", | |
# torch_dtype=torch.float16, | |
# ) | |
# def respond(message, history): | |
# system_prompt = ( | |
# "You are a helpful coding assistant specialized in web development. " | |
# "Provide complete code snippets for HTML, CSS, JS, Flask, Node.js etc." | |
# ) | |
# # Build input prompt including chat history | |
# chat_history = "" | |
# for user_msg, bot_msg in history: | |
# chat_history += f"User: {user_msg}\nAssistant: {bot_msg}\n" | |
# prompt = f"{system_prompt}\n{chat_history}User: {message}\nAssistant:" | |
# inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
# outputs = model.generate( | |
# **inputs, | |
# max_new_tokens=512, | |
# temperature=0.7, | |
# do_sample=True, | |
# top_p=0.95, | |
# eos_token_id=tokenizer.eos_token_id, | |
# ) | |
# generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# # Extract only the new response part after the prompt | |
# response = generated_text[len(prompt):].strip() | |
# # Append current Q/A to history | |
# history.append((message, response)) | |
# return "", history | |
# demo = gr.ChatInterface(respond, type="messages") | |
# if __name__ == "__main__": | |
# demo.launch() | |
import os | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from dotenv import load_dotenv | |
# Load .env variables (make sure to have HF_TOKEN in .env or set as env var) | |
load_dotenv() | |
HF_TOKEN = os.getenv("HF_TOKEN") # or directly assign your token here as string | |
# Initialize InferenceClient with Hugging Face API token | |
client = InferenceClient( | |
model="Qwen/Qwen2.5-Coder-32B-Instruct", | |
token=HF_TOKEN | |
) | |
def respond(message, history): | |
""" | |
Chat response generator function streaming from Hugging Face Inference API. | |
""" | |
system_message = ( | |
"You are a helpful and experienced coding assistant specialized in web development. " | |
"Help the user by generating complete and functional code for building websites. " | |
"You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) " | |
"based on their requirements." | |
) | |
max_tokens = 2048 | |
temperature = 0.7 | |
top_p = 0.95 | |
# Prepare messages in OpenAI chat format | |
messages = [{"role": "system", "content": system_message}] | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
# Stream response tokens from Hugging Face Inference API | |
for chunk in client.chat.completions.create( | |
model="Qwen/Qwen2.5-Coder-32B-Instruct", | |
messages=messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = chunk.choices[0].delta.get("content", "") | |
response += token | |
yield response | |
# Create Gradio chat interface | |
demo = gr.ChatInterface(fn=respond, title="Coding Assistant", | |
description="Ask for web development code help!") | |
if __name__ == "__main__": | |
demo.launch() | |