Update app.py
Browse files
app.py
CHANGED
@@ -1,443 +1,3 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
-
# """
|
5 |
-
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
# """
|
7 |
-
# client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
|
8 |
-
|
9 |
-
|
10 |
-
# def respond(
|
11 |
-
# message,
|
12 |
-
# history: list[tuple[str, str]],
|
13 |
-
# system_message,
|
14 |
-
# max_tokens,
|
15 |
-
# temperature,
|
16 |
-
# top_p,
|
17 |
-
# ):
|
18 |
-
# messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
# for val in history:
|
21 |
-
# if val[0]:
|
22 |
-
# messages.append({"role": "user", "content": val[0]})
|
23 |
-
# if val[1]:
|
24 |
-
# messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
# messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
# response = ""
|
29 |
-
|
30 |
-
# for message in client.chat_completion(
|
31 |
-
# messages,
|
32 |
-
# max_tokens=max_tokens,
|
33 |
-
# stream=True,
|
34 |
-
# temperature=temperature,
|
35 |
-
# top_p=top_p,
|
36 |
-
# ):
|
37 |
-
# token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
# response += token
|
40 |
-
# yield response
|
41 |
-
|
42 |
-
|
43 |
-
# """
|
44 |
-
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
# """
|
46 |
-
# demo = gr.ChatInterface(
|
47 |
-
# respond,
|
48 |
-
# additional_inputs=[
|
49 |
-
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
# gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
|
51 |
-
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
# gr.Slider(
|
53 |
-
# minimum=0.1,
|
54 |
-
# maximum=1.0,
|
55 |
-
# value=0.95,
|
56 |
-
# step=0.05,
|
57 |
-
# label="Top-p (nucleus sampling)",
|
58 |
-
# ),
|
59 |
-
# ],
|
60 |
-
# )
|
61 |
-
|
62 |
-
|
63 |
-
# if __name__ == "__main__":
|
64 |
-
# demo.launch()
|
65 |
-
|
66 |
-
# import gradio as gr
|
67 |
-
# from huggingface_hub import InferenceClient
|
68 |
-
|
69 |
-
"""
|
70 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
71 |
-
"""
|
72 |
-
# client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
|
73 |
-
|
74 |
-
# def respond(message, history: list[tuple[str, str]]):
|
75 |
-
# system_message = (
|
76 |
-
# "You are a helpful and experienced coding assistant specialized in web development. "
|
77 |
-
# "Help the user by generating complete and functional code for building websites. "
|
78 |
-
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) based on their requirements. "
|
79 |
-
# "Break down the tasks clearly if needed, and be friendly and supportive in your responses.")
|
80 |
-
# max_tokens = 2048
|
81 |
-
# temperature = 0.7
|
82 |
-
# top_p = 0.95
|
83 |
-
|
84 |
-
# messages = [{"role": "system", "content": system_message}]
|
85 |
-
|
86 |
-
# for val in history:
|
87 |
-
# if val[0]:
|
88 |
-
# messages.append({"role": "user", "content": val[0]})
|
89 |
-
# if val[1]:
|
90 |
-
# messages.append({"role": "assistant", "content": val[1]})
|
91 |
-
|
92 |
-
# messages.append({"role": "user", "content": message})
|
93 |
-
|
94 |
-
# response = ""
|
95 |
-
|
96 |
-
# for message in client.chat_completion(
|
97 |
-
# messages,
|
98 |
-
# max_tokens=max_tokens,
|
99 |
-
# stream=True,
|
100 |
-
# temperature=temperature,
|
101 |
-
# top_p=top_p,
|
102 |
-
# ):
|
103 |
-
# token = message.choices[0].delta.content
|
104 |
-
|
105 |
-
# response += token
|
106 |
-
# yield response
|
107 |
-
|
108 |
-
# """
|
109 |
-
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
110 |
-
# """
|
111 |
-
# demo = gr.ChatInterface(respond)
|
112 |
-
|
113 |
-
# if __name__ == "__main__":
|
114 |
-
# demo.launch()
|
115 |
-
|
116 |
-
# import gradio as gr
|
117 |
-
# from huggingface_hub import InferenceClient
|
118 |
-
|
119 |
-
# """
|
120 |
-
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
121 |
-
# """
|
122 |
-
# client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
|
123 |
-
|
124 |
-
# def respond(message, history: list[tuple[str, str]]):
|
125 |
-
# system_message = (
|
126 |
-
# "You are a helpful and experienced coding assistant specialized in web development. "
|
127 |
-
# "Help the user by generating complete and functional code for building websites. "
|
128 |
-
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) based on their requirements. "
|
129 |
-
# "Break down the tasks clearly if needed, and be friendly and supportive in your responses."
|
130 |
-
# )
|
131 |
-
# max_tokens = 2048
|
132 |
-
# temperature = 0.7
|
133 |
-
# top_p = 0.95
|
134 |
-
|
135 |
-
# messages = [{"role": "system", "content": system_message}]
|
136 |
-
|
137 |
-
# for val in history:
|
138 |
-
# if val[0]:
|
139 |
-
# messages.append({"role": "user", "content": val[0]})
|
140 |
-
# if val[1]:
|
141 |
-
# messages.append({"role": "assistant", "content": val[1]})
|
142 |
-
|
143 |
-
# messages.append({"role": "user", "content": message})
|
144 |
-
|
145 |
-
# response = ""
|
146 |
-
|
147 |
-
# for message in client.chat_completion(
|
148 |
-
# messages,
|
149 |
-
# max_tokens=max_tokens,
|
150 |
-
# stream=True,
|
151 |
-
# temperature=temperature,
|
152 |
-
# top_p=top_p,
|
153 |
-
# ):
|
154 |
-
# token = message.choices[0].delta.content
|
155 |
-
|
156 |
-
# response += token
|
157 |
-
# yield response
|
158 |
-
|
159 |
-
# """
|
160 |
-
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
161 |
-
# """
|
162 |
-
# demo = gr.ChatInterface(respond)
|
163 |
-
|
164 |
-
# if __name__ == "__main__":
|
165 |
-
# demo.launch()
|
166 |
-
|
167 |
-
# import gradio as gr
|
168 |
-
# from huggingface_hub import InferenceClient
|
169 |
-
|
170 |
-
# # 1. Instantiate with named model param
|
171 |
-
# client = InferenceClient(model="Qwen/Qwen2.5-Coder-32B-Instruct")
|
172 |
-
|
173 |
-
# def respond(message, history: list[tuple[str, str]]):
|
174 |
-
# system_message = (
|
175 |
-
# "You are a helpful and experienced coding assistant specialized in web development. "
|
176 |
-
# "Help the user by generating complete and functional code for building websites. "
|
177 |
-
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
|
178 |
-
# "based on their requirements."
|
179 |
-
# )
|
180 |
-
# max_tokens = 2048
|
181 |
-
# temperature = 0.7
|
182 |
-
# top_p = 0.95
|
183 |
-
|
184 |
-
# # Build messages in OpenAI-compatible format
|
185 |
-
# messages = [{"role": "system", "content": system_message}]
|
186 |
-
# for user_msg, assistant_msg in history:
|
187 |
-
# if user_msg:
|
188 |
-
# messages.append({"role": "user", "content": user_msg})
|
189 |
-
# if assistant_msg:
|
190 |
-
# messages.append({"role": "assistant", "content": assistant_msg})
|
191 |
-
# messages.append({"role": "user", "content": message})
|
192 |
-
|
193 |
-
# response = ""
|
194 |
-
# # 2. Use named parameters and alias if desired
|
195 |
-
# for chunk in client.chat.completions.create(
|
196 |
-
# model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
197 |
-
# messages=messages,
|
198 |
-
# max_tokens=max_tokens,
|
199 |
-
# stream=True,
|
200 |
-
# temperature=temperature,
|
201 |
-
# top_p=top_p,
|
202 |
-
# ):
|
203 |
-
# # 3. Extract token content
|
204 |
-
# token = chunk.choices[0].delta.content or ""
|
205 |
-
# response += token
|
206 |
-
# yield response
|
207 |
-
|
208 |
-
# # 4. Wire up Gradio chat interface
|
209 |
-
# demo = gr.ChatInterface(respond, type="messages")
|
210 |
-
|
211 |
-
# if __name__ == "__main__":
|
212 |
-
# demo.launch()
|
213 |
-
# import gradio as gr
|
214 |
-
# from huggingface_hub import InferenceClient
|
215 |
-
|
216 |
-
# hf_token = "HF_TOKEN"
|
217 |
-
|
218 |
-
|
219 |
-
# # Ensure token is available
|
220 |
-
# if hf_token is None:
|
221 |
-
# raise ValueError("HUGGINGFACEHUB_API_TOKEN is not set in .env file or environment.")
|
222 |
-
|
223 |
-
# # Instantiate Hugging Face Inference Client with token
|
224 |
-
# client = InferenceClient(
|
225 |
-
# model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
226 |
-
# token=hf_token
|
227 |
-
# )
|
228 |
-
|
229 |
-
# def respond(message, history: list[tuple[str, str]]):
|
230 |
-
# system_message = (
|
231 |
-
# "You are a helpful and experienced coding assistant specialized in web development. "
|
232 |
-
# "Help the user by generating complete and functional code for building websites. "
|
233 |
-
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
|
234 |
-
# "based on their requirements."
|
235 |
-
# )
|
236 |
-
# max_tokens = 2048
|
237 |
-
# temperature = 0.7
|
238 |
-
# top_p = 0.95
|
239 |
-
|
240 |
-
# # Build conversation history
|
241 |
-
# messages = [{"role": "system", "content": system_message}]
|
242 |
-
# for user_msg, assistant_msg in history:
|
243 |
-
# if user_msg:
|
244 |
-
# messages.append({"role": "user", "content": user_msg})
|
245 |
-
# if assistant_msg:
|
246 |
-
# messages.append({"role": "assistant", "content": assistant_msg})
|
247 |
-
# messages.append({"role": "user", "content": message})
|
248 |
-
|
249 |
-
# response = ""
|
250 |
-
# # Stream the response from the model
|
251 |
-
# for chunk in client.chat.completions.create(
|
252 |
-
# model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
253 |
-
# messages=messages,
|
254 |
-
# max_tokens=max_tokens,
|
255 |
-
# stream=True,
|
256 |
-
# temperature=temperature,
|
257 |
-
# top_p=top_p,
|
258 |
-
# ):
|
259 |
-
# token = chunk.choices[0].delta.content or ""
|
260 |
-
# response += token
|
261 |
-
# yield response
|
262 |
-
|
263 |
-
# # Gradio UI
|
264 |
-
# demo = gr.ChatInterface(respond, type="messages")
|
265 |
-
|
266 |
-
# if __name__ == "__main__":
|
267 |
-
# demo.launch()
|
268 |
-
|
269 |
-
# import gradio as gr
|
270 |
-
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
271 |
-
# import torch
|
272 |
-
|
273 |
-
# # Load once globally
|
274 |
-
# tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-32B-Instruct")
|
275 |
-
# model = AutoModelForCausalLM.from_pretrained(
|
276 |
-
# "Qwen/Qwen2.5-Coder-32B-Instruct",
|
277 |
-
# device_map="auto",
|
278 |
-
# torch_dtype=torch.float16,
|
279 |
-
# )
|
280 |
-
|
281 |
-
# def respond(message, history):
|
282 |
-
# system_prompt = (
|
283 |
-
# "You are a helpful coding assistant specialized in web development. "
|
284 |
-
# "Provide complete code snippets for HTML, CSS, JS, Flask, Node.js etc."
|
285 |
-
# )
|
286 |
-
# # Build input prompt including chat history
|
287 |
-
# chat_history = ""
|
288 |
-
# for user_msg, bot_msg in history:
|
289 |
-
# chat_history += f"User: {user_msg}\nAssistant: {bot_msg}\n"
|
290 |
-
# prompt = f"{system_prompt}\n{chat_history}User: {message}\nAssistant:"
|
291 |
-
|
292 |
-
# inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
293 |
-
# outputs = model.generate(
|
294 |
-
# **inputs,
|
295 |
-
# max_new_tokens=512,
|
296 |
-
# temperature=0.7,
|
297 |
-
# do_sample=True,
|
298 |
-
# top_p=0.95,
|
299 |
-
# eos_token_id=tokenizer.eos_token_id,
|
300 |
-
# )
|
301 |
-
# generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
302 |
-
|
303 |
-
# # Extract only the new response part after the prompt
|
304 |
-
# response = generated_text[len(prompt):].strip()
|
305 |
-
|
306 |
-
# # Append current Q/A to history
|
307 |
-
# history.append((message, response))
|
308 |
-
# return "", history
|
309 |
-
|
310 |
-
# demo = gr.ChatInterface(respond, type="messages")
|
311 |
-
|
312 |
-
# if __name__ == "__main__":
|
313 |
-
# demo.launch()
|
314 |
-
# import os
|
315 |
-
# import gradio as gr
|
316 |
-
# from huggingface_hub import InferenceClient
|
317 |
-
# from dotenv import load_dotenv
|
318 |
-
|
319 |
-
# # Load .env variables (make sure to have HF_TOKEN in .env or set as env var)
|
320 |
-
# load_dotenv()
|
321 |
-
# HF_TOKEN = os.getenv("HF_TOKEN") # or directly assign your token here as string
|
322 |
-
|
323 |
-
# # Initialize InferenceClient with Hugging Face API token
|
324 |
-
# client = InferenceClient(
|
325 |
-
# model="deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
|
326 |
-
# token=HF_TOKEN
|
327 |
-
# )
|
328 |
-
|
329 |
-
# def respond(message, history):
|
330 |
-
# """
|
331 |
-
# Chat response generator function streaming from Hugging Face Inference API.
|
332 |
-
# """
|
333 |
-
# system_message = (
|
334 |
-
# "You are a helpful and experienced coding assistant specialized in web development. "
|
335 |
-
# "Help the user by generating complete and functional code for building websites. "
|
336 |
-
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
|
337 |
-
# "based on their requirements."
|
338 |
-
# )
|
339 |
-
# max_tokens = 2048
|
340 |
-
# temperature = 0.7
|
341 |
-
# top_p = 0.95
|
342 |
-
|
343 |
-
# # Prepare messages in OpenAI chat format
|
344 |
-
# messages = [{"role": "system", "content": system_message}]
|
345 |
-
# for user_msg, assistant_msg in history:
|
346 |
-
# if user_msg:
|
347 |
-
# messages.append({"role": "user", "content": user_msg})
|
348 |
-
# if assistant_msg:
|
349 |
-
# messages.append({"role": "assistant", "content": assistant_msg})
|
350 |
-
# messages.append({"role": "user", "content": message})
|
351 |
-
|
352 |
-
# response = ""
|
353 |
-
# # Stream response tokens from Hugging Face Inference API
|
354 |
-
# for chunk in client.chat.completions.create(
|
355 |
-
# model="deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
|
356 |
-
# messages=messages,
|
357 |
-
# max_tokens=max_tokens,
|
358 |
-
# stream=True,
|
359 |
-
# temperature=temperature,
|
360 |
-
# top_p=top_p,
|
361 |
-
# ):
|
362 |
-
# token = chunk.choices[0].delta.get("content", "")
|
363 |
-
# response += token
|
364 |
-
# yield response
|
365 |
-
|
366 |
-
# # Create Gradio chat interface
|
367 |
-
# demo = gr.ChatInterface(fn=respond, title="Website Building Assistant")
|
368 |
-
|
369 |
-
# if __name__ == "__main__":
|
370 |
-
# demo.launch()
|
371 |
-
# import os
|
372 |
-
# import gradio as gr
|
373 |
-
# from huggingface_hub import InferenceClient
|
374 |
-
# from dotenv import load_dotenv
|
375 |
-
|
376 |
-
# # Load environment variables
|
377 |
-
# load_dotenv()
|
378 |
-
# HF_TOKEN = os.getenv("HF_TOKEN") # Ensure this is set in .env
|
379 |
-
|
380 |
-
# # Initialize Hugging Face Inference Client
|
381 |
-
# client = InferenceClient(
|
382 |
-
# model="deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
|
383 |
-
# token=HF_TOKEN
|
384 |
-
# )
|
385 |
-
|
386 |
-
# # Define system instructions for the chatbot
|
387 |
-
# system_message = (
|
388 |
-
# "You are a helpful and experienced coding assistant specialized in web development. "
|
389 |
-
# "Help the user by generating complete and functional code for building websites. "
|
390 |
-
# "You can provide HTML, CSS, JavaScript, and backend code (like Flask, Node.js, etc.) "
|
391 |
-
# "based on their requirements."
|
392 |
-
# )
|
393 |
-
|
394 |
-
# # Define the response generation function
|
395 |
-
# def respond(message, history):
|
396 |
-
# max_tokens = 2048
|
397 |
-
# temperature = 0.7
|
398 |
-
# top_p = 0.95
|
399 |
-
|
400 |
-
# # Convert chat history into OpenAI-style format
|
401 |
-
# messages = [{"role": "system", "content": system_message}]
|
402 |
-
# for item in history:
|
403 |
-
# role = item["role"]
|
404 |
-
# content = item["content"]
|
405 |
-
# messages.append({"role": role, "content": content})
|
406 |
-
|
407 |
-
# # Add the latest user message
|
408 |
-
# messages.append({"role": "user", "content": message})
|
409 |
-
|
410 |
-
# response = ""
|
411 |
-
|
412 |
-
# # Streaming response from the Hugging Face Inference API
|
413 |
-
# for chunk in client.chat.completions.create(
|
414 |
-
# model="deepseek-ai/DeepSeek-R1-0528-Qwen3-8B",
|
415 |
-
# messages=messages,
|
416 |
-
# max_tokens=max_tokens,
|
417 |
-
# stream=True,
|
418 |
-
# temperature=temperature,
|
419 |
-
# top_p=top_p,
|
420 |
-
# ):
|
421 |
-
# token = chunk.choices[0].delta.get("content")
|
422 |
-
# if token is not None:
|
423 |
-
# response += token
|
424 |
-
# yield response
|
425 |
-
|
426 |
-
# # Create Gradio Chat Interface
|
427 |
-
# demo = gr.ChatInterface(
|
428 |
-
# fn=respond,
|
429 |
-
# title="Website Building Assistant",
|
430 |
-
# chatbot=gr.Chatbot(show_label=False),
|
431 |
-
# type="openai", # Use OpenAI-style message format
|
432 |
-
# )
|
433 |
-
|
434 |
-
# if __name__ == "__main__":
|
435 |
-
# demo.launch()# app.py
|
436 |
-
|
437 |
-
# app.py
|
438 |
-
|
439 |
-
# app.py
|
440 |
-
|
441 |
# import os
|
442 |
# import gradio as gr
|
443 |
# from huggingface_hub import InferenceClient
|
@@ -449,7 +9,7 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
449 |
|
450 |
# # Initialize Hugging Face Inference Client
|
451 |
# client = InferenceClient(
|
452 |
-
# model="mistralai/
|
453 |
# token=HF_TOKEN
|
454 |
# )
|
455 |
|
@@ -461,7 +21,7 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
461 |
# "based on their requirements."
|
462 |
# )
|
463 |
|
464 |
-
# # Streaming chatbot logic
|
465 |
# def respond(message, history):
|
466 |
# # Prepare messages with system prompt
|
467 |
# messages = [{"role": "system", "content": system_message}]
|
@@ -472,7 +32,7 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
472 |
# # Stream response from the model
|
473 |
# response = ""
|
474 |
# for chunk in client.chat.completions.create(
|
475 |
-
# model="mistralai/
|
476 |
# messages=messages,
|
477 |
# max_tokens=1024,
|
478 |
# temperature=0.7,
|
@@ -492,9 +52,6 @@ For more information on `huggingface_hub` Inference API support, please check th
|
|
492 |
# if __name__ == "__main__":
|
493 |
# demo.launch()
|
494 |
|
495 |
-
|
496 |
-
# app.py
|
497 |
-
|
498 |
import os
|
499 |
import gradio as gr
|
500 |
from huggingface_hub import InferenceClient
|
@@ -506,7 +63,7 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
506 |
|
507 |
# Initialize Hugging Face Inference Client
|
508 |
client = InferenceClient(
|
509 |
-
model="
|
510 |
token=HF_TOKEN
|
511 |
)
|
512 |
|
@@ -522,21 +79,27 @@ system_message = (
|
|
522 |
def respond(message, history):
|
523 |
# Prepare messages with system prompt
|
524 |
messages = [{"role": "system", "content": system_message}]
|
525 |
-
for
|
526 |
-
messages.append(
|
|
|
527 |
messages.append({"role": "user", "content": message})
|
528 |
|
529 |
# Stream response from the model
|
530 |
response = ""
|
531 |
for chunk in client.chat.completions.create(
|
532 |
-
model="
|
533 |
messages=messages,
|
534 |
-
max_tokens=
|
535 |
temperature=0.7,
|
536 |
top_p=0.95,
|
537 |
stream=True,
|
538 |
):
|
539 |
-
|
|
|
|
|
|
|
|
|
|
|
540 |
response += token
|
541 |
yield response
|
542 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# import os
|
2 |
# import gradio as gr
|
3 |
# from huggingface_hub import InferenceClient
|
|
|
9 |
|
10 |
# # Initialize Hugging Face Inference Client
|
11 |
# client = InferenceClient(
|
12 |
+
# model="mistralai/Mistral-7B-Instruct-v0.3",
|
13 |
# token=HF_TOKEN
|
14 |
# )
|
15 |
|
|
|
21 |
# "based on their requirements."
|
22 |
# )
|
23 |
|
24 |
+
# # Streaming chatbot logic
|
25 |
# def respond(message, history):
|
26 |
# # Prepare messages with system prompt
|
27 |
# messages = [{"role": "system", "content": system_message}]
|
|
|
32 |
# # Stream response from the model
|
33 |
# response = ""
|
34 |
# for chunk in client.chat.completions.create(
|
35 |
+
# model="mistralai/Mistral-7B-Instruct-v0.3",
|
36 |
# messages=messages,
|
37 |
# max_tokens=1024,
|
38 |
# temperature=0.7,
|
|
|
52 |
# if __name__ == "__main__":
|
53 |
# demo.launch()
|
54 |
|
|
|
|
|
|
|
55 |
import os
|
56 |
import gradio as gr
|
57 |
from huggingface_hub import InferenceClient
|
|
|
63 |
|
64 |
# Initialize Hugging Face Inference Client
|
65 |
client = InferenceClient(
|
66 |
+
model="Qwen/Qwen2.5-Coder-7B-Instruct",
|
67 |
token=HF_TOKEN
|
68 |
)
|
69 |
|
|
|
79 |
def respond(message, history):
|
80 |
# Prepare messages with system prompt
|
81 |
messages = [{"role": "system", "content": system_message}]
|
82 |
+
for user_msg, assistant_msg in history:
|
83 |
+
messages.append({"role": "user", "content": user_msg})
|
84 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
85 |
messages.append({"role": "user", "content": message})
|
86 |
|
87 |
# Stream response from the model
|
88 |
response = ""
|
89 |
for chunk in client.chat.completions.create(
|
90 |
+
model="Qwen/Qwen2.5-Coder-7B-Instruct",
|
91 |
messages=messages,
|
92 |
+
max_tokens=2048,
|
93 |
temperature=0.7,
|
94 |
top_p=0.95,
|
95 |
stream=True,
|
96 |
):
|
97 |
+
# Safely handle empty choices
|
98 |
+
if not chunk.choices:
|
99 |
+
continue
|
100 |
+
|
101 |
+
# Safely extract token content
|
102 |
+
token = chunk.choices[0].delta.content or ""
|
103 |
response += token
|
104 |
yield response
|
105 |
|