Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -95,36 +95,88 @@
|
|
95 |
# # Load your model after launching the interface
|
96 |
# gr.load("models/Bhaskar2611/Capstone").launch()
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
import os
|
99 |
import gradio as gr
|
100 |
from huggingface_hub import InferenceClient
|
101 |
from dotenv import load_dotenv
|
102 |
|
103 |
-
# Load API token
|
104 |
load_dotenv()
|
105 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
106 |
|
107 |
-
# Initialize
|
108 |
client = InferenceClient(
|
109 |
model="mistralai/Mistral-7B-Instruct-v0.3",
|
110 |
token=HF_TOKEN
|
111 |
)
|
112 |
|
113 |
-
#
|
114 |
-
|
115 |
"You are an AI Dermatologist chatbot designed to assist users with Hair by only providing text "
|
116 |
-
"and if user information is not provided related to Hair then ask what they want to know related to Hair."
|
117 |
)
|
118 |
|
|
|
119 |
def respond(message, history):
|
120 |
-
messages
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
if bot_msg:
|
125 |
-
messages.append({"role": "assistant", "content": bot_msg})
|
126 |
messages.append({"role": "user", "content": message})
|
127 |
|
|
|
128 |
response = ""
|
129 |
for chunk in client.chat.completions.create(
|
130 |
model="mistralai/Mistral-7B-Instruct-v0.3",
|
@@ -134,16 +186,15 @@ def respond(message, history):
|
|
134 |
top_p=0.95,
|
135 |
stream=True,
|
136 |
):
|
137 |
-
token = chunk.choices[0].delta.get("content", "")
|
138 |
response += token
|
139 |
yield response
|
140 |
|
141 |
-
#
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
theme="default"
|
146 |
-
)
|
147 |
|
|
|
148 |
if __name__ == "__main__":
|
149 |
demo.launch()
|
|
|
95 |
# # Load your model after launching the interface
|
96 |
# gr.load("models/Bhaskar2611/Capstone").launch()
|
97 |
|
98 |
+
# import os
|
99 |
+
# import gradio as gr
|
100 |
+
# from huggingface_hub import InferenceClient
|
101 |
+
# from dotenv import load_dotenv
|
102 |
+
|
103 |
+
# # Load API token from .env or environment
|
104 |
+
# load_dotenv()
|
105 |
+
# HF_TOKEN = os.getenv("HF_TOKEN") # or directly use your token here
|
106 |
+
|
107 |
+
# # Initialize the Hugging Face inference client
|
108 |
+
# client = InferenceClient(
|
109 |
+
# model="mistralai/Mistral-7B-Instruct-v0.3",
|
110 |
+
# token=HF_TOKEN
|
111 |
+
# )
|
112 |
+
|
113 |
+
# # Skin assistant prompt
|
114 |
+
# HAIR_ASSISTANT_PROMPT = (
|
115 |
+
# "You are an AI Dermatologist chatbot designed to assist users with Hair by only providing text "
|
116 |
+
# "and if user information is not provided related to Hair then ask what they want to know related to Hair."
|
117 |
+
# )
|
118 |
+
|
119 |
+
# def respond(message, history):
|
120 |
+
# messages = [{"role": "system", "content": HAIR_ASSISTANT_PROMPT}]
|
121 |
+
# for user_msg, bot_msg in history:
|
122 |
+
# if user_msg:
|
123 |
+
# messages.append({"role": "user", "content": user_msg})
|
124 |
+
# if bot_msg:
|
125 |
+
# messages.append({"role": "assistant", "content": bot_msg})
|
126 |
+
# messages.append({"role": "user", "content": message})
|
127 |
+
|
128 |
+
# response = ""
|
129 |
+
# for chunk in client.chat.completions.create(
|
130 |
+
# model="mistralai/Mistral-7B-Instruct-v0.3",
|
131 |
+
# messages=messages,
|
132 |
+
# max_tokens=1024,
|
133 |
+
# temperature=0.7,
|
134 |
+
# top_p=0.95,
|
135 |
+
# stream=True,
|
136 |
+
# ):
|
137 |
+
# token = chunk.choices[0].delta.get("content", "")
|
138 |
+
# response += token
|
139 |
+
# yield response
|
140 |
+
|
141 |
+
# # Launch Gradio interface
|
142 |
+
# demo = gr.ChatInterface(
|
143 |
+
# fn=respond,
|
144 |
+
# title="Hair-Bot",
|
145 |
+
# theme="default"
|
146 |
+
# )
|
147 |
+
|
148 |
+
# if __name__ == "__main__":
|
149 |
+
# demo.launch()
|
150 |
import os
|
151 |
import gradio as gr
|
152 |
from huggingface_hub import InferenceClient
|
153 |
from dotenv import load_dotenv
|
154 |
|
155 |
+
# Load Hugging Face API token
|
156 |
load_dotenv()
|
157 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
158 |
|
159 |
+
# Initialize Hugging Face client
|
160 |
client = InferenceClient(
|
161 |
model="mistralai/Mistral-7B-Instruct-v0.3",
|
162 |
token=HF_TOKEN
|
163 |
)
|
164 |
|
165 |
+
# System prompt about Indian monuments
|
166 |
+
system_message = (
|
167 |
"You are an AI Dermatologist chatbot designed to assist users with Hair by only providing text "
|
168 |
+
"and if user information is not provided related to Hair then ask what they want to know related to Hair."
|
169 |
)
|
170 |
|
171 |
+
# Streaming chatbot logic
|
172 |
def respond(message, history):
|
173 |
+
# Prepare messages with system prompt
|
174 |
+
messages = [{"role": "system", "content": system_message}]
|
175 |
+
for msg in history:
|
176 |
+
messages.append(msg)
|
|
|
|
|
177 |
messages.append({"role": "user", "content": message})
|
178 |
|
179 |
+
# Stream response from the model
|
180 |
response = ""
|
181 |
for chunk in client.chat.completions.create(
|
182 |
model="mistralai/Mistral-7B-Instruct-v0.3",
|
|
|
186 |
top_p=0.95,
|
187 |
stream=True,
|
188 |
):
|
189 |
+
token = chunk.choices[0].delta.get("content", "") or ""
|
190 |
response += token
|
191 |
yield response
|
192 |
|
193 |
+
# Create Gradio interface
|
194 |
+
with gr.Blocks() as demo:
|
195 |
+
chatbot = gr.Chatbot(type='messages') # Use modern message format
|
196 |
+
gr.ChatInterface(fn=respond, chatbot=chatbot, type="messages") # Match format
|
|
|
|
|
197 |
|
198 |
+
# Launch app
|
199 |
if __name__ == "__main__":
|
200 |
demo.launch()
|