File size: 12,661 Bytes
0491281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
399d5a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eedc15d
 
0491281
eedc15d
ecc3826
0491281
ecc3826
0491281
 
 
693936e
 
 
eedc15d
ecc3826
693936e
 
 
 
 
399d5a5
693936e
 
399d5a5
e35136f
693936e
 
 
 
399d5a5
 
 
 
 
eedc15d
693936e
 
 
 
 
 
 
ecc3826
eedc15d
0491281
eedc15d
ecc3826
eedc15d
ecc3826
 
eedc15d
0491281
eedc15d
693936e
ecc3826
eedc15d
693936e
0491281
693936e
ecc3826
eedc15d
0491281
693936e
 
ecc3826
0491281
399d5a5
ecc3826
 
693936e
0491281
 
 
693936e
 
0491281
693936e
 
399d5a5
0491281
ecc3826
693936e
ecc3826
399d5a5
693936e
 
 
ecc3826
 
693936e
 
0491281
 
ecc3826
0491281
693936e
ecc3826
0491281
 
ecc3826
0491281
 
eedc15d
693936e
 
 
 
 
 
eedc15d
693936e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# import gradio as gr
# from huggingface_hub import InferenceClient

# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")

# def respond(message, history: list[tuple[str, str]]):
#     system_message = "You are a friendly Chatbot. If the user query is product-related, provide structured product recommendations based on intent and relevance."
#     max_tokens = 2048
#     temperature = 0.7
#     top_p = 0.95

#     messages = [{"role": "system", "content": system_message}]

#     for val in history:
#         if val[0]:
#             messages.append({"role": "user", "content": val[0]})
#         if val[1]:
#             messages.append({"role": "assistant", "content": val[1]})

#     # Append product recommendation prompt if the user query is relevant
#     product_prompt = ("Given a user's search query, recommend the most relevant products from the catalog. "
#                       "Consider synonyms, user intent, and semantic meaning rather than just keyword matching. "
#                       "If the query is vague, infer potential needs based on common shopping behavior. "
#                       "Provide a ranked list of product recommendations with a short explanation for each suggestion. "
#                       "Ensure the recommendations are diverse and cover multiple relevant categories if applicable. "
#                       f"Now, based on the user query: '{message}', generate a well-structured product recommendation list.")
    
#     messages.append({"role": "user", "content": product_prompt})

#     response = ""

#     for message in client.chat_completion(
#         messages,
#         max_tokens=max_tokens,
#         stream=True,
#         temperature=temperature,
#         top_p=top_p,
#     ):
#         token = message.choices[0].delta.content
#         response += token
#         yield response

# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(respond)

# if __name__ == "__main__":
#     demo.launch()
# import gradio as gr
# from huggingface_hub import InferenceClient
# import tempfile

# # Initialize clients
# chat_client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
# stt_client = InferenceClient("openai/whisper-large-v3")

# def transcribe_audio(audio_file):
#     """Convert audio to text using Whisper model"""
#     with open(audio_file, "rb") as f:
#         return stt_client.automatic_speech_recognition(f.read())

# def respond(history, query):
#     system_message = "You are a friendly Chatbot. Provide structured product recommendations based on user queries."
#     messages = [{"role": "system", "content": system_message}]

#     # Build conversation history
#     for entry in history:
#         messages.append({"role": "user", "content": entry[0]})
#         if entry[1]:  # Only add assistant response if present
#             messages.append({"role": "assistant", "content": entry[1]})

#     # Add product recommendation prompt
#     product_prompt = ("Analyze this query and provide recommendations: ")
#     messages.append({"role": "user", "content": f"{product_prompt}\n{query}"})

#     # Generate streamed response
#     response = ""
#     for chunk in chat_client.chat_completion(
#         messages,
#         max_tokens=2048,
#         stream=True,
#         temperature=0.7,
#         top_p=0.95,
#     ):
#         token = chunk.choices[0].delta.content
#         response += token
#         history[-1] = (query, response)  # Update last history entry
#         yield history

# # Custom CSS for better styling
# css = """
# .gradio-container { background: #f0f4f8 !important; }
# .audio-input { background: white !important; border-radius: 10px; }
# """

# with gr.Blocks(css=css) as demo:
#     gr.Markdown("# Smart Product Assistant πŸŽ€πŸ›οΈ")
    
#     with gr.Row():
#         chatbot = gr.Chatbot(height=600)
        
#         with gr.Column():
#             with gr.Tab("Text Input"):
#                 text_input = gr.Textbox(label="Type your query")
#             with gr.Tab("Voice Input"):
#                 audio_input = gr.Audio(
#                     sources="microphone",
#                     type="filepath",
#                     label="Record your query",
#                     elem_classes="audio-input"
#                 )
#             submit_btn = gr.Button("Submit", variant="primary")

#     def process_inputs(text, audio, history):
#         """Handle both text and audio inputs"""
#         query = text.strip()
#         if audio and not query:
#             query = transcribe_audio(audio)
        
#         if query:
#             # Add new entry to history with empty response
#             return history + [[query, None]]
#         return history

#     submit_btn.click(
#         process_inputs,
#         [text_input, audio_input, chatbot],
#         chatbot,
#         queue=False
#     ).then(
#         respond,
#         [chatbot, text_input],
#         chatbot
#     )

# if __name__ == "__main__":
#     demo.launch()

import gradio as gr
from huggingface_hub import InferenceClient
import tempfile

# Initialize clients
chat_client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
stt_client = InferenceClient("openai/whisper-large-v3")

def transcribe_audio(audio_file):
    """Convert audio to text using Whisper model"""
    with open(audio_file, "rb") as f:
        result = stt_client.automatic_speech_recognition(f.read())
    return result.text  # Extract only the text from the response

def respond(history, query):
    system_message = """You are a friendly Product Assistant. Follow these rules:
    1. If the query is product-related, provide structured recommendations
    2. Consider both voice and text inputs equally
    3. Format responses with bullet points and emojis
    4. Always acknowledge voice queries specifically"""
    
    product_prompt = f"""Analyze this {'voice' if history[-1][0] == query else 'text'} query:
    "{query}"
    Recommend products considering:
    - User intent
    - Semantic meaning
    - Potential use cases
    - Price ranges
    Provide ranked list with brief explanations"""
    
    messages = [
        {"role": "system", "content": system_message},
        {"role": "user", "content": product_prompt}
    ]

    # Build conversation history
    for entry in history[:-1]:  # Exclude current query
        messages.extend([
            {"role": "user", "content": entry[0]},
            {"role": "assistant", "content": entry[1]}
        ])

    # Generate streamed response
    response = ""
    for chunk in chat_client.chat_completion(
        messages,
        max_tokens=2048,
        stream=True,
        temperature=0.7,
        top_p=0.95,
    ):
        token = chunk.choices[0].delta.content
        response += token
        history[-1] = (history[-1][0], response)  # Update last entry
        yield history

# Custom styling
css = """
.gradio-container { background: #f5f7fa !important; }
.audio-input { background: white !important; border-radius: 10px; }
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("# 🎀 Voice-Activated Product Advisor πŸ›οΈ")
    
    with gr.Row():
        chatbot = gr.Chatbot(height=600, bubble_full_width=False)
        
        with gr.Column():
            with gr.Tab("πŸŽ™οΈ Voice Input"):
                audio_input = gr.Audio(
                    sources="microphone",
                    type="filepath",
                    label="Speak your product request",
                    elem_classes="audio-input"
                )
            with gr.Tab("πŸ“ Text Input"):
                text_input = gr.Textbox(label="Type your request")
            submit_btn = gr.Button("πŸš€ Get Recommendations", variant="primary")

    def process_inputs(text, audio, history):
        """Handle both input types"""
        query = text.strip()
        if audio:
            query = transcribe_audio(audio)
            # Add voice-specific marker
            query = f"🎀 Voice Query: {query}"
        
        if query:
            return history + [(query, None)]  # Proper tuple format
        return history

    submit_btn.click(
        process_inputs,
        [text_input, audio_input, chatbot],
        chatbot,
        queue=False
    ).then(
        respond,
        [chatbot, text_input],
        chatbot
    )

    # Clear inputs after submission
    submit_btn.click(
        lambda: [None, None],  # Clear audio and text inputs
        outputs=[text_input, audio_input]
    )

if __name__ == "__main__":
    demo.launch()

# import gradio as gr
# from huggingface_hub import InferenceClient
# import tempfile

# # Initialize clients
# chat_client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
# stt_client = InferenceClient("openai/whisper-large-v3")

# def transcribe_audio(audio_file):
#     """Convert audio to text using Whisper model"""
#     try:
#         with open(audio_file, "rb") as f:
#             result = stt_client.automatic_speech_recognition(f.read())
#         return result.text
#     except Exception as e:
#         print(f"Transcription error: {e}")
#         return "Could not process audio. Please try again."

# def respond(history, query):
#     system_message = """You are a Voice-Aware Product Assistant. Rules:
#     1. Always acknowledge voice queries with 🎧 icon
#     2. Provide structured recommendations with emojis
#     3. Consider both voice and text inputs equally"""
    
#     product_prompt = f"""Analyze this {'🎧 VOICE' if '🎧' in query else 'πŸ“ TEXT'} query:
#     "{query.replace('🎧 VOICE: ', '')}"
#     Recommend products considering:
#     - Voice tone analysis (if audio)
#     - Semantic meaning
#     - User intent
#     - Price context"""
    
#     messages = [
#         {"role": "system", "content": system_message},
#         {"role": "user", "content": product_prompt}
#     ]

#     # Generate streamed response
#     response = ""
#     for chunk in chat_client.chat_completion(
#         messages,
#         max_tokens=2048,
#         stream=True,
#         temperature=0.7,
#         top_p=0.95,
#     ):
#         token = chunk.choices[0].delta.content
#         response += token
#         history[-1] = (history[-1][0], response)
#         yield history

# css = """
# .gradio-container { background: #f8f9fa !important; }
# .audio-input { background: white !important; border-radius: 10px; }
# .mic-status { color: #4a90e2; font-weight: bold; }
# """

# with gr.Blocks(css=css, title="Voice Product Assistant") as demo:
#     gr.Markdown("# 🎧 Voice-Activated Product Advisor πŸ›’")
    
#     with gr.Row():
#         chatbot = gr.Chatbot(height=600, bubble_full_width=False)
        
#         with gr.Column():
#             # Audio input with status indicator
#             with gr.Group():
#                 audio_input = gr.Audio(
#                     sources="microphone",
#                     type="filepath",
#                     label="Click mic & speak",
#                     elem_classes="audio-input",
#                     interactive=True
#                 )
#                 mic_status = gr.Markdown("πŸ”΄ Mic offline", elem_classes="mic-status")
            
#             # Text input
#             text_input = gr.Textbox(label="Or type your request")
            
#             # Unified submit button
#             submit_btn = gr.Button("πŸš€ Get Recommendations", variant="primary")

#     # Handle audio permissions
#     def request_mic_access():
#         return gr.update(text="🟒 Mic ready") if audio_input.is_enabled else gr.update(text="πŸ”΄ Mic blocked")

#     # Process inputs
#     def process_inputs(text, audio, history):
#         query = text.strip()
#         if audio:
#             transcript = transcribe_audio(audio)
#             query = f"🎧 VOICE: {transcript}"
        
#         if query:
#             return history + [(query, None)], ""
#         return history, ""

#     # Connect all components
#     audio_input.change(
#         request_mic_access,
#         outputs=mic_status,
#         queue=False
#     )
    
#     submit_btn.click(
#         process_inputs,
#         [text_input, audio_input, chatbot],
#         [chatbot, text_input],
#         queue=False
#     ).then(
#         respond,
#         [chatbot, text_input],
#         chatbot
#     )

# if __name__ == "__main__":
#     demo.launch(server_port=7860, share=False)