Spaces:
Sleeping
Sleeping
File size: 12,661 Bytes
0491281 399d5a5 eedc15d 0491281 eedc15d ecc3826 0491281 ecc3826 0491281 693936e eedc15d ecc3826 693936e 399d5a5 693936e 399d5a5 e35136f 693936e 399d5a5 eedc15d 693936e ecc3826 eedc15d 0491281 eedc15d ecc3826 eedc15d ecc3826 eedc15d 0491281 eedc15d 693936e ecc3826 eedc15d 693936e 0491281 693936e ecc3826 eedc15d 0491281 693936e ecc3826 0491281 399d5a5 ecc3826 693936e 0491281 693936e 0491281 693936e 399d5a5 0491281 ecc3826 693936e ecc3826 399d5a5 693936e ecc3826 693936e 0491281 ecc3826 0491281 693936e ecc3826 0491281 ecc3826 0491281 eedc15d 693936e eedc15d 693936e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
# def respond(message, history: list[tuple[str, str]]):
# system_message = "You are a friendly Chatbot. If the user query is product-related, provide structured product recommendations based on intent and relevance."
# max_tokens = 2048
# temperature = 0.7
# top_p = 0.95
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# # Append product recommendation prompt if the user query is relevant
# product_prompt = ("Given a user's search query, recommend the most relevant products from the catalog. "
# "Consider synonyms, user intent, and semantic meaning rather than just keyword matching. "
# "If the query is vague, infer potential needs based on common shopping behavior. "
# "Provide a ranked list of product recommendations with a short explanation for each suggestion. "
# "Ensure the recommendations are diverse and cover multiple relevant categories if applicable. "
# f"Now, based on the user query: '{message}', generate a well-structured product recommendation list.")
# messages.append({"role": "user", "content": product_prompt})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(respond)
# if __name__ == "__main__":
# demo.launch()
# import gradio as gr
# from huggingface_hub import InferenceClient
# import tempfile
# # Initialize clients
# chat_client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
# stt_client = InferenceClient("openai/whisper-large-v3")
# def transcribe_audio(audio_file):
# """Convert audio to text using Whisper model"""
# with open(audio_file, "rb") as f:
# return stt_client.automatic_speech_recognition(f.read())
# def respond(history, query):
# system_message = "You are a friendly Chatbot. Provide structured product recommendations based on user queries."
# messages = [{"role": "system", "content": system_message}]
# # Build conversation history
# for entry in history:
# messages.append({"role": "user", "content": entry[0]})
# if entry[1]: # Only add assistant response if present
# messages.append({"role": "assistant", "content": entry[1]})
# # Add product recommendation prompt
# product_prompt = ("Analyze this query and provide recommendations: ")
# messages.append({"role": "user", "content": f"{product_prompt}\n{query}"})
# # Generate streamed response
# response = ""
# for chunk in chat_client.chat_completion(
# messages,
# max_tokens=2048,
# stream=True,
# temperature=0.7,
# top_p=0.95,
# ):
# token = chunk.choices[0].delta.content
# response += token
# history[-1] = (query, response) # Update last history entry
# yield history
# # Custom CSS for better styling
# css = """
# .gradio-container { background: #f0f4f8 !important; }
# .audio-input { background: white !important; border-radius: 10px; }
# """
# with gr.Blocks(css=css) as demo:
# gr.Markdown("# Smart Product Assistant π€ποΈ")
# with gr.Row():
# chatbot = gr.Chatbot(height=600)
# with gr.Column():
# with gr.Tab("Text Input"):
# text_input = gr.Textbox(label="Type your query")
# with gr.Tab("Voice Input"):
# audio_input = gr.Audio(
# sources="microphone",
# type="filepath",
# label="Record your query",
# elem_classes="audio-input"
# )
# submit_btn = gr.Button("Submit", variant="primary")
# def process_inputs(text, audio, history):
# """Handle both text and audio inputs"""
# query = text.strip()
# if audio and not query:
# query = transcribe_audio(audio)
# if query:
# # Add new entry to history with empty response
# return history + [[query, None]]
# return history
# submit_btn.click(
# process_inputs,
# [text_input, audio_input, chatbot],
# chatbot,
# queue=False
# ).then(
# respond,
# [chatbot, text_input],
# chatbot
# )
# if __name__ == "__main__":
# demo.launch()
import gradio as gr
from huggingface_hub import InferenceClient
import tempfile
# Initialize clients
chat_client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
stt_client = InferenceClient("openai/whisper-large-v3")
def transcribe_audio(audio_file):
"""Convert audio to text using Whisper model"""
with open(audio_file, "rb") as f:
result = stt_client.automatic_speech_recognition(f.read())
return result.text # Extract only the text from the response
def respond(history, query):
system_message = """You are a friendly Product Assistant. Follow these rules:
1. If the query is product-related, provide structured recommendations
2. Consider both voice and text inputs equally
3. Format responses with bullet points and emojis
4. Always acknowledge voice queries specifically"""
product_prompt = f"""Analyze this {'voice' if history[-1][0] == query else 'text'} query:
"{query}"
Recommend products considering:
- User intent
- Semantic meaning
- Potential use cases
- Price ranges
Provide ranked list with brief explanations"""
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": product_prompt}
]
# Build conversation history
for entry in history[:-1]: # Exclude current query
messages.extend([
{"role": "user", "content": entry[0]},
{"role": "assistant", "content": entry[1]}
])
# Generate streamed response
response = ""
for chunk in chat_client.chat_completion(
messages,
max_tokens=2048,
stream=True,
temperature=0.7,
top_p=0.95,
):
token = chunk.choices[0].delta.content
response += token
history[-1] = (history[-1][0], response) # Update last entry
yield history
# Custom styling
css = """
.gradio-container { background: #f5f7fa !important; }
.audio-input { background: white !important; border-radius: 10px; }
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# π€ Voice-Activated Product Advisor ποΈ")
with gr.Row():
chatbot = gr.Chatbot(height=600, bubble_full_width=False)
with gr.Column():
with gr.Tab("ποΈ Voice Input"):
audio_input = gr.Audio(
sources="microphone",
type="filepath",
label="Speak your product request",
elem_classes="audio-input"
)
with gr.Tab("π Text Input"):
text_input = gr.Textbox(label="Type your request")
submit_btn = gr.Button("π Get Recommendations", variant="primary")
def process_inputs(text, audio, history):
"""Handle both input types"""
query = text.strip()
if audio:
query = transcribe_audio(audio)
# Add voice-specific marker
query = f"π€ Voice Query: {query}"
if query:
return history + [(query, None)] # Proper tuple format
return history
submit_btn.click(
process_inputs,
[text_input, audio_input, chatbot],
chatbot,
queue=False
).then(
respond,
[chatbot, text_input],
chatbot
)
# Clear inputs after submission
submit_btn.click(
lambda: [None, None], # Clear audio and text inputs
outputs=[text_input, audio_input]
)
if __name__ == "__main__":
demo.launch()
# import gradio as gr
# from huggingface_hub import InferenceClient
# import tempfile
# # Initialize clients
# chat_client = InferenceClient("Qwen/Qwen2.5-Coder-32B-Instruct")
# stt_client = InferenceClient("openai/whisper-large-v3")
# def transcribe_audio(audio_file):
# """Convert audio to text using Whisper model"""
# try:
# with open(audio_file, "rb") as f:
# result = stt_client.automatic_speech_recognition(f.read())
# return result.text
# except Exception as e:
# print(f"Transcription error: {e}")
# return "Could not process audio. Please try again."
# def respond(history, query):
# system_message = """You are a Voice-Aware Product Assistant. Rules:
# 1. Always acknowledge voice queries with π§ icon
# 2. Provide structured recommendations with emojis
# 3. Consider both voice and text inputs equally"""
# product_prompt = f"""Analyze this {'π§ VOICE' if 'π§' in query else 'π TEXT'} query:
# "{query.replace('π§ VOICE: ', '')}"
# Recommend products considering:
# - Voice tone analysis (if audio)
# - Semantic meaning
# - User intent
# - Price context"""
# messages = [
# {"role": "system", "content": system_message},
# {"role": "user", "content": product_prompt}
# ]
# # Generate streamed response
# response = ""
# for chunk in chat_client.chat_completion(
# messages,
# max_tokens=2048,
# stream=True,
# temperature=0.7,
# top_p=0.95,
# ):
# token = chunk.choices[0].delta.content
# response += token
# history[-1] = (history[-1][0], response)
# yield history
# css = """
# .gradio-container { background: #f8f9fa !important; }
# .audio-input { background: white !important; border-radius: 10px; }
# .mic-status { color: #4a90e2; font-weight: bold; }
# """
# with gr.Blocks(css=css, title="Voice Product Assistant") as demo:
# gr.Markdown("# π§ Voice-Activated Product Advisor π")
# with gr.Row():
# chatbot = gr.Chatbot(height=600, bubble_full_width=False)
# with gr.Column():
# # Audio input with status indicator
# with gr.Group():
# audio_input = gr.Audio(
# sources="microphone",
# type="filepath",
# label="Click mic & speak",
# elem_classes="audio-input",
# interactive=True
# )
# mic_status = gr.Markdown("π΄ Mic offline", elem_classes="mic-status")
# # Text input
# text_input = gr.Textbox(label="Or type your request")
# # Unified submit button
# submit_btn = gr.Button("π Get Recommendations", variant="primary")
# # Handle audio permissions
# def request_mic_access():
# return gr.update(text="π’ Mic ready") if audio_input.is_enabled else gr.update(text="π΄ Mic blocked")
# # Process inputs
# def process_inputs(text, audio, history):
# query = text.strip()
# if audio:
# transcript = transcribe_audio(audio)
# query = f"π§ VOICE: {transcript}"
# if query:
# return history + [(query, None)], ""
# return history, ""
# # Connect all components
# audio_input.change(
# request_mic_access,
# outputs=mic_status,
# queue=False
# )
# submit_btn.click(
# process_inputs,
# [text_input, audio_input, chatbot],
# [chatbot, text_input],
# queue=False
# ).then(
# respond,
# [chatbot, text_input],
# chatbot
# )
# if __name__ == "__main__":
# demo.launch(server_port=7860, share=False)
|