# import whisper # import gradio as gr # model = whisper.load_model("small") # def transcribe(audio): # #time.sleep(3) # # load audio and pad/trim it to fit 30 seconds # audio = whisper.load_audio(audio) # audio = whisper.pad_or_trim(audio) # # make log-Mel spectrogram and move to the same device as the model # mel = whisper.log_mel_spectrogram(audio).to(model.device) # # detect the spoken language # _, probs = model.detect_language(mel) # print(f"Detected language: {max(probs, key=probs.get)}") # # decode the audio # options = whisper.DecodingOptions(fp16 = False) # result = whisper.decode(model, mel, options) # return result.text # gr.Interface( # title = 'Product Recommendation System Text', # fn=transcribe, # inputs=[ # gr.inputs.Audio(source="microphone", type="filepath") # ], # outputs=[ # "textbox" # ], # live=True).launch() import whisper import gradio as gr model = whisper.load_model("small") def transcribe(audio): # Load audio and pad/trim it to fit 30 seconds audio = whisper.load_audio(audio) audio = whisper.pad_or_trim(audio) # Convert to log-Mel spectrogram mel = whisper.log_mel_spectrogram(audio).to(model.device) # Detect the spoken language _, probs = model.detect_language(mel) print(f"Detected language: {max(probs, key=probs.get)}") # Decode the audio options = whisper.DecodingOptions(fp16=False) result = whisper.decode(model, mel, options) return result.text # Update Gradio interface for the new version gr.Interface( title='Product Recommendation System Text', fn=transcribe, inputs=gr.Audio(type="filepath"), # Removed 'source' argument outputs=gr.Textbox(), live=True ).launch()