Spaces:
Sleeping
Sleeping
bigmed@bigmed
commited on
Commit
Β·
0a2ce36
1
Parent(s):
727292a
initial code commit
Browse files- README.md +1 -1
- app.py +174 -0
- pipline.py +222 -0
- requirements.txt +6 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Glacuma Detection
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: Glacuma Detection
|
3 |
+
emoji: π
|
4 |
colorFrom: blue
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
app.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision.transforms as transforms
|
3 |
+
from torch.nn import functional as F
|
4 |
+
import cv2
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
from pipline import Transformer_Regression, extract_regions_Last , compute_ratios
|
9 |
+
|
10 |
+
|
11 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
+
|
13 |
+
## Define some parameters
|
14 |
+
image_shape = 384 #### 512 got 87
|
15 |
+
batch_size=1
|
16 |
+
dim_patch=4
|
17 |
+
num_classes=3
|
18 |
+
label_smoothing=0.1
|
19 |
+
scale=1
|
20 |
+
import time
|
21 |
+
start = time.time()
|
22 |
+
torch.manual_seed(0)
|
23 |
+
#import random
|
24 |
+
|
25 |
+
|
26 |
+
tfms = transforms.Compose([
|
27 |
+
transforms.Resize((image_shape, image_shape)),
|
28 |
+
transforms.ToTensor(),
|
29 |
+
transforms.Normalize(0.5,0.5)
|
30 |
+
#transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
31 |
+
#transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
|
32 |
+
|
33 |
+
])
|
34 |
+
|
35 |
+
def Final_Compute_regression_results_Sample(Model, batch_sampler,num_head=2):
|
36 |
+
Model.eval()
|
37 |
+
score_cup = []
|
38 |
+
score_disc = []
|
39 |
+
yreg_pred = []
|
40 |
+
yreg_true = []
|
41 |
+
with torch.no_grad():
|
42 |
+
#for batch_sampler in loader:
|
43 |
+
train_batch_tfms = batch_sampler['image'].to(device=device)
|
44 |
+
#ytrue_seg = batch_sampler['image_original'] #.detach().cpu().numpy()
|
45 |
+
ytrue_seg = batch_sampler['image_original'] # .detach().cpu().numpy()
|
46 |
+
scores = Model(train_batch_tfms.unsqueeze(0))
|
47 |
+
|
48 |
+
yseg_pred = F.interpolate(scores['seg'], size=(ytrue_seg.shape[0], ytrue_seg.shape[1]), mode='bilinear',
|
49 |
+
align_corners=True)
|
50 |
+
|
51 |
+
|
52 |
+
# Regions_crop=extract_regions_Last(np.array(batch_sampler['image_original'][0]),yseg_pred[0].detach().cpu().numpy())
|
53 |
+
Regions_crop = extract_regions_Last(np.array(batch_sampler['image_original']),
|
54 |
+
yseg_pred.argmax(1).long()[0].detach().cpu().numpy())
|
55 |
+
Regions_crop['image'] = Image.fromarray(np.uint8(Regions_crop['image'])).convert('RGB')
|
56 |
+
|
57 |
+
### Get back if two heads
|
58 |
+
ytrue_seg_crop = ytrue_seg[Regions_crop['cord'][0]:Regions_crop['cord'][1],
|
59 |
+
Regions_crop['cord'][2]:Regions_crop['cord'][3]]
|
60 |
+
ytrue_seg_crop = np.expand_dims(ytrue_seg_crop, axis=0)
|
61 |
+
|
62 |
+
if num_head==2:
|
63 |
+
scores = Model((tfms(Regions_crop['image']).unsqueeze(0)).to(device))
|
64 |
+
yseg_pred_crop = F.interpolate(scores['seg_aux_1'], size=(ytrue_seg_crop.shape[1], ytrue_seg_crop.shape[2]),
|
65 |
+
mode='bilinear', align_corners=True)
|
66 |
+
yseg_pred[:, :, Regions_crop['cord'][0]:Regions_crop['cord'][1],
|
67 |
+
Regions_crop['cord'][2]:Regions_crop['cord'][3]] = yseg_pred_crop
|
68 |
+
# yseg_pred[:, :, Regions_crop['cord'][0]:Regions_crop['cord'][1],
|
69 |
+
# Regions_crop['cord'][2]:Regions_crop['cord'][3]]+yseg_pred_crop
|
70 |
+
yseg_pred = torch.softmax(yseg_pred, dim=1)
|
71 |
+
yseg_pred = yseg_pred.argmax(1).long()
|
72 |
+
yseg_pred = ((yseg_pred).long()).detach().cpu().numpy()
|
73 |
+
ratios = compute_ratios(yseg_pred[0])
|
74 |
+
yreg_pred.append(ratios.vcdr)
|
75 |
+
|
76 |
+
### Plot
|
77 |
+
p_img = batch_sampler['image'].to(device=device).unsqueeze(0)
|
78 |
+
p_img = F.interpolate(p_img, size=(yseg_pred.shape[1], yseg_pred.shape[2]),
|
79 |
+
mode='bilinear', align_corners=True)
|
80 |
+
### Get reversed image
|
81 |
+
image_orig = (p_img[0] * 0.5 + 0.5).permute(1, 2, 0).detach().cpu().numpy()
|
82 |
+
image_orig=np.uint8(image_orig*255)
|
83 |
+
####
|
84 |
+
# train_batch_tfms
|
85 |
+
#plt.imshow(image_orig)
|
86 |
+
# make a copy as these operations are destructive
|
87 |
+
image_cont = image_orig.copy()
|
88 |
+
###### plot for Prediction....
|
89 |
+
# threshold for 2 value
|
90 |
+
ret, thresh = cv2.threshold(np.uint8(yseg_pred[0]), 1, 2, 0)
|
91 |
+
# find and draw contour for 2 value (red)
|
92 |
+
conts, hir = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
93 |
+
cv2.drawContours(image_cont, conts, -1, (0, 255, 0), 2)
|
94 |
+
#threshold for 1 value
|
95 |
+
ret, thresh = cv2.threshold(np.uint8(yseg_pred[0]), 0, 2, 0)
|
96 |
+
#find and draw contour for 1 value (blue)
|
97 |
+
conts, hir = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
98 |
+
cv2.drawContours(image_cont, conts, -1, (0, 0, 255), 2)
|
99 |
+
#plot contoured image
|
100 |
+
|
101 |
+
# plt.imshow(image_cont)
|
102 |
+
# plt.axis('off')
|
103 |
+
|
104 |
+
# print('Vertical cup to disc ratio:')
|
105 |
+
# print(ratios.vcdr)
|
106 |
+
if True:
|
107 |
+
glaucoma = 'not implemented'
|
108 |
+
# print('Galucoma:')
|
109 |
+
|
110 |
+
|
111 |
+
return image_cont, ratios.vcdr, glaucoma, Regions_crop
|
112 |
+
|
113 |
+
#load model
|
114 |
+
DeepLab=Transformer_Regression(image_dim=image_shape,dim_patch=dim_patch,num_classes=3,scale=scale,feat_dim=128)
|
115 |
+
DeepLab.to(device=device)
|
116 |
+
DeepLab.load_state_dict(torch.load("TrainAll_Maghrabi84_50iteration_SWIN.pth.tar"))
|
117 |
+
|
118 |
+
def infer(img):
|
119 |
+
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
120 |
+
|
121 |
+
sample_batch = dict()
|
122 |
+
|
123 |
+
sample_batch['image_original'] = img
|
124 |
+
|
125 |
+
im_retina_pil = Image.fromarray(img)
|
126 |
+
|
127 |
+
im_retina_pil = tfms(im_retina_pil)
|
128 |
+
sample_batch['image'] = im_retina_pil
|
129 |
+
|
130 |
+
# plt.figure('Head2')
|
131 |
+
result, ratio, diagnosis, cropped = Final_Compute_regression_results_Sample(DeepLab, sample_batch, num_head=2)
|
132 |
+
|
133 |
+
# cropped = cv2.cvtColor(np.asarray(cropped), cv2.COLOR_BGR2RGB)
|
134 |
+
cropped = result[cropped['cord'][0] -100 :cropped['cord'][1] +100,
|
135 |
+
cropped['cord'][2] -100 :cropped['cord'][3] +100]
|
136 |
+
|
137 |
+
return ratio, diagnosis, result, cropped
|
138 |
+
|
139 |
+
|
140 |
+
title = "Glaucoma detection"
|
141 |
+
description = "Using vertical ratio"
|
142 |
+
|
143 |
+
outputs = [gr.Textbox(label="Vertical cup to disc ratio:"), gr.Textbox(label="predicted diagnosis"), gr.Image(label='labeled image'), gr.Image(label='zoomed in')]
|
144 |
+
with gr.Blocks(css='#title {text-align : center;} ') as demo:
|
145 |
+
with gr.Row():
|
146 |
+
gr.Markdown(
|
147 |
+
f'''
|
148 |
+
# {title}
|
149 |
+
{description}
|
150 |
+
|
151 |
+
''',
|
152 |
+
elem_id='title'
|
153 |
+
)
|
154 |
+
with gr.Row():
|
155 |
+
with gr.Column():
|
156 |
+
prompt = gr.Image(label="Enter Your Retina Image")
|
157 |
+
btn = gr.Button(value='Submit')
|
158 |
+
examples = gr.Examples(
|
159 |
+
['M00027.png','M00056.png','M00073.png','M00093.png', 'M00018.png', 'M00034.png'],
|
160 |
+
inputs=[prompt], fn=infer, outputs=[outputs], cache_examples=False)
|
161 |
+
with gr.Column():
|
162 |
+
with gr.Row():
|
163 |
+
text1 = gr.Textbox(label="Vertical cup to disc ratio:")
|
164 |
+
text2 = gr.Textbox(label="predicted diagnosis")
|
165 |
+
img = gr.Image(label='labeled image')
|
166 |
+
zoom = gr.Image(label='zoomed in')
|
167 |
+
|
168 |
+
outputs = [text1,text2,img,zoom]
|
169 |
+
|
170 |
+
btn.click(fn=infer, inputs=prompt, outputs=outputs)
|
171 |
+
|
172 |
+
|
173 |
+
if __name__ == '__main__':
|
174 |
+
demo.launch()
|
pipline.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#### This is an implmentation of deeplabv3 plus for retina detection
|
2 |
+
import torch
|
3 |
+
import torchvision
|
4 |
+
from torch.nn import functional as F
|
5 |
+
import torch.nn as nn
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
+
from skimage.measure import label, regionprops
|
9 |
+
import torch
|
10 |
+
from collections import namedtuple
|
11 |
+
|
12 |
+
# check you have the right version of timm
|
13 |
+
# assert timm.__version__ == "0.3.2"
|
14 |
+
from timm.models.swin_transformer import swin_base_patch4_window12_384_in22k
|
15 |
+
|
16 |
+
torch.manual_seed(0)
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
pad_value = 10
|
19 |
+
|
20 |
+
|
21 |
+
def extract_regions_Last(img_test, ytruth, pad1=pad_value, pad2=pad_value, pad3=pad_value, pad4=pad_value):
|
22 |
+
|
23 |
+
y_truth_copy = ytruth.copy()
|
24 |
+
y_truth_copy[y_truth_copy == 2] = 1
|
25 |
+
label_img = label(y_truth_copy)
|
26 |
+
|
27 |
+
regions = regionprops(label_img)
|
28 |
+
max_Area = -1
|
29 |
+
cropped_results = dict()
|
30 |
+
for props in regions:
|
31 |
+
if props.area > max_Area:
|
32 |
+
max_Area = props.area
|
33 |
+
minr, minc, maxr, maxc = props.bbox
|
34 |
+
bx = (minc, maxc, maxc, minc, minc)
|
35 |
+
by = (minr, minr, maxr, maxr, minr)
|
36 |
+
# print(minr,maxr)
|
37 |
+
# print(bx)
|
38 |
+
# ax.plot(bx, by, '-b', linewidth=2.5)
|
39 |
+
# cropped_image= pred_class[minr-pad:maxr+pad, minc-pad:maxc+pad]
|
40 |
+
# cropped_pred_mask = pred_class[minr - pad:maxr + pad, minc - pad:maxc + pad]
|
41 |
+
if minr - pad1 < 0:
|
42 |
+
pad1 = 5
|
43 |
+
if minr - pad1 < 0:
|
44 |
+
pad1 = 0
|
45 |
+
|
46 |
+
if minc - pad2 < 0:
|
47 |
+
pad2 = 5
|
48 |
+
if minc - pad2 < 0:
|
49 |
+
pad2 = 0
|
50 |
+
if maxr + pad3 > label_img.shape[0]:
|
51 |
+
pad3 = 5
|
52 |
+
if maxr + pad3 > label_img.shape[0]:
|
53 |
+
pad3 = 0
|
54 |
+
|
55 |
+
if maxc + pad4 > label_img.shape[1]:
|
56 |
+
pad4 = 5
|
57 |
+
if maxc + pad4 > label_img.shape[1]:
|
58 |
+
pad4 = 0
|
59 |
+
|
60 |
+
cropped_image = img_test[minr - pad1:maxr + pad3, minc - pad2:maxc + pad4, :]
|
61 |
+
cropped_truth = ytruth[minr - pad1:maxr + pad3, minc - pad2:maxc + pad4]
|
62 |
+
txcordi = []
|
63 |
+
txcordi.append(minr - pad1)
|
64 |
+
txcordi.append(maxr + pad3)
|
65 |
+
txcordi.append(minc - pad2)
|
66 |
+
txcordi.append(maxc + pad4)
|
67 |
+
cropped_results['image'] = cropped_image
|
68 |
+
cropped_results['truth'] = cropped_truth
|
69 |
+
cropped_results['cord'] = txcordi
|
70 |
+
|
71 |
+
return cropped_results
|
72 |
+
|
73 |
+
|
74 |
+
class BasicBlock(nn.Module):
|
75 |
+
def __init__(self, channel_num):
|
76 |
+
super(BasicBlock, self).__init__()
|
77 |
+
# TODO: 3x3 convolution -> relu
|
78 |
+
# the input and output channel number is channel_num
|
79 |
+
self.conv_block1 = nn.Sequential(
|
80 |
+
nn.Conv2d(channel_num, 48, 1, padding=0),
|
81 |
+
nn.GroupNorm(num_groups=8, num_channels=48),
|
82 |
+
nn.GELU(),
|
83 |
+
)
|
84 |
+
self.conv_block2 = nn.Sequential(
|
85 |
+
nn.Conv2d(48, channel_num, 3, padding=1),
|
86 |
+
nn.GroupNorm(num_groups=8, num_channels=channel_num),
|
87 |
+
nn.GELU(),
|
88 |
+
)
|
89 |
+
self.relu = nn.GELU()
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
# TODO: forward
|
93 |
+
residual = x
|
94 |
+
x = self.conv_block1(x)
|
95 |
+
x = self.conv_block2(x)
|
96 |
+
x = x + residual
|
97 |
+
return x
|
98 |
+
|
99 |
+
|
100 |
+
class ASPP(nn.Module):
|
101 |
+
def __init__(self, image_dim=384, head=1):
|
102 |
+
super(ASPP, self).__init__()
|
103 |
+
self.image_dim = image_dim
|
104 |
+
self.Residual2 = BasicBlock(channel_num=head)
|
105 |
+
self.pixel_shuffle = nn.PixelShuffle(2)
|
106 |
+
self.head = head
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
x21 = F.interpolate(x, size=(self.image_dim, self.image_dim), mode='bilinear',
|
110 |
+
align_corners=True)
|
111 |
+
return x21
|
112 |
+
|
113 |
+
|
114 |
+
class Transformer_Regression(nn.Module):
|
115 |
+
def __init__(self, image_dim=224, dim_patch=24, num_classes=3, scale=1, feat_dim=192):
|
116 |
+
super(Transformer_Regression, self).__init__()
|
117 |
+
self.backbone = swin_base_patch4_window12_384_in22k(pretrained=True)
|
118 |
+
self.aux = 1
|
119 |
+
self.dim_patch = dim_patch
|
120 |
+
self.image_dim = image_dim
|
121 |
+
self.num_classes = num_classes
|
122 |
+
self.ASPP1 = ASPP(image_dim, head=128)
|
123 |
+
self.ASPP2 = ASPP(image_dim, head=128)
|
124 |
+
# self.ASPP3=ASPP(image_dim,scale,feat_dim)
|
125 |
+
self.feat_dim = feat_dim
|
126 |
+
# self.scale=1
|
127 |
+
self.Classifier_main = nn.Sequential(
|
128 |
+
# nn.Dropout(0.1),
|
129 |
+
nn.Conv2d(128, self.num_classes, 3, bias=True, padding=1),
|
130 |
+
)
|
131 |
+
self.Classifier_aux1 = nn.Sequential(
|
132 |
+
# nn.Dropout(0.1),
|
133 |
+
nn.Conv2d(128, self.num_classes, 3, bias=True, padding=1),
|
134 |
+
)
|
135 |
+
|
136 |
+
self.conv1 = nn.Sequential(nn.Conv2d(448, 128, kernel_size=(1, 1), padding=1), nn.GELU())
|
137 |
+
self.pixelshufler1 = nn.PixelShuffle(2)
|
138 |
+
self.pixelshufler2 = nn.PixelShuffle(4)
|
139 |
+
|
140 |
+
def forward(self, x):
|
141 |
+
hide1 = self.backbone(x)
|
142 |
+
x1 = []
|
143 |
+
x1.append((hide1[0][:, 0:].reshape(-1, 48, 48, 256)))
|
144 |
+
x1.append((hide1[1][:, 0:].reshape(-1, 24, 24, 512)))
|
145 |
+
x1.append((hide1[2][:, 0:].reshape(-1, 12, 12, 1024)))
|
146 |
+
for jk in range(len(x1)):
|
147 |
+
x1[jk] = x1[jk].permute(0, 3, 1, 2)
|
148 |
+
x1[1] = self.pixelshufler1(x1[1])
|
149 |
+
x1[2] = self.pixelshufler2(x1[2])
|
150 |
+
|
151 |
+
x1[0] = torch.cat((x1[0], x1[1], x1[2]), 1)
|
152 |
+
|
153 |
+
x1[0] = self.conv1(x1[0])
|
154 |
+
Score = dict()
|
155 |
+
x_main1 = self.ASPP1(x1[0])
|
156 |
+
x_main = self.Classifier_main(x_main1)
|
157 |
+
x_aux_1 = self.ASPP2(x1[0])
|
158 |
+
x_aux_1 = self.Classifier_aux1(x_aux_1) ####### x_aux_1
|
159 |
+
|
160 |
+
Score['seg'] = x_main
|
161 |
+
Score['seg_aux_1'] = x_aux_1
|
162 |
+
# Score['seg_aux_2'] = x_aux_2
|
163 |
+
|
164 |
+
return Score
|
165 |
+
|
166 |
+
|
167 |
+
|
168 |
+
|
169 |
+
Ratios = namedtuple("Ratios", 'cdr hcdr vcdr')
|
170 |
+
eps = np.finfo(np.float32).eps
|
171 |
+
|
172 |
+
|
173 |
+
def compute_ratios(mask_image):
|
174 |
+
'''
|
175 |
+
Given an input image containing the cup and disc masks the function returns
|
176 |
+
a tuple with the area, horizontal, and vertical cup-to-disc ratios
|
177 |
+
Input:
|
178 |
+
mask_image: an image with values (0,1,2) or (255,128,0)
|
179 |
+
for bg, disc, cup respectively
|
180 |
+
Output:
|
181 |
+
Ratios(cdr,hcdr,vcdr): a named tuple containing the computed ratios
|
182 |
+
'''
|
183 |
+
|
184 |
+
# if mask_image.max() == 2:
|
185 |
+
# make sure correct values are provided in the image
|
186 |
+
# if np.setdiff1d(np.unique(mask_image),np.array([0,1,2])).shape[0]>0:
|
187 |
+
# raise ValueError(('Mask values can only be (0,1,2) '
|
188 |
+
# 'or (255,128,0) for bg, disc, cup'))
|
189 |
+
# disc = np.uint8(mask_image > 0)
|
190 |
+
# cup = np.uint8(mask_image > 1)
|
191 |
+
# elif mask_image.max() == 255:
|
192 |
+
# # make sure correct values are provided in the image
|
193 |
+
# if np.setdiff1d(np.unique(mask_image),np.array([0,128,255])).shape[0]>0:
|
194 |
+
# raise ValueError(('Mask values can only be (0,1,2) '
|
195 |
+
# 'or (255,128,0) for bg, disc, cup'))
|
196 |
+
# disc = np.uint8(mask_image < 255)
|
197 |
+
# cup = np.uint8(mask_image == 0)
|
198 |
+
# else:
|
199 |
+
# raise ValueError(("Mask values can only be (0,1,2) or (255,128,0) "
|
200 |
+
# "for bg, disc, cup"))
|
201 |
+
|
202 |
+
# get the area
|
203 |
+
disc = 0
|
204 |
+
cup = 0
|
205 |
+
disc = disc + np.uint8(mask_image > 0)
|
206 |
+
cup = cup + np.uint8(mask_image > 1)
|
207 |
+
|
208 |
+
disc_area = np.sum(disc)
|
209 |
+
cup_area = np.sum(cup)
|
210 |
+
# get the vertical and horizontal mesure of the cup
|
211 |
+
cup_vert = np.sum(cup, axis=0).max().astype(np.int32)
|
212 |
+
cup_horz = np.sum(cup, axis=1).max().astype(np.int32)
|
213 |
+
# get the vertical and horizontal mesure of the disc
|
214 |
+
disc_vert = np.sum(disc, axis=0).max().astype(np.int32)
|
215 |
+
disc_horz = np.sum(disc, axis=1).max().astype(np.int32)
|
216 |
+
# calculate the cup to disc ratio
|
217 |
+
cdr = (cup_area + eps) / (disc_area + eps) # add eps to avoid div by 0
|
218 |
+
# calculate the horizontal and vertical cup to disc ration
|
219 |
+
hcdr = (cup_horz + eps) / (disc_horz + eps)
|
220 |
+
vcdr = (cup_vert + eps) / (disc_vert + eps)
|
221 |
+
|
222 |
+
return Ratios(cdr, hcdr, vcdr)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
timm
|
3 |
+
skimage
|
4 |
+
numpy
|
5 |
+
cv2
|
6 |
+
Pillow
|