bigmed@bigmed commited on
Commit
f9fa815
·
1 Parent(s): ffb81ab

fixed clip import and deleted old files

Browse files
MED_VQA_Huggyface_Gradio.py CHANGED
@@ -5,7 +5,7 @@ from transformers import ViltProcessor, ViltForQuestionAnswering
5
  import torch
6
  import torch.nn as nn
7
  from transformers import CLIPTokenizer
8
- from CLIP import clip
9
  from Transformers_for_Caption import Transformer_Caption
10
  import numpy as np
11
  import torchvision.transforms as transforms
 
5
  import torch
6
  import torch.nn as nn
7
  from transformers import CLIPTokenizer
8
+ import clip
9
  from Transformers_for_Caption import Transformer_Caption
10
  import numpy as np
11
  import torchvision.transforms as transforms
app.py DELETED
@@ -1,46 +0,0 @@
1
- ##### VQA MED Demo
2
-
3
- import gradio as gr
4
- from transformers import ViltProcessor, ViltForQuestionAnswering
5
- import torch
6
-
7
- torch.hub.download_url_to_file('http://images.cocodataset.org/val2017/000000039769.jpg', 'cats.jpg')
8
-
9
- processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
10
- model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
11
-
12
-
13
- def answer_question(image, text):
14
- encoding = processor(image, text, return_tensors="pt")
15
-
16
- # forward pass
17
- with torch.no_grad():
18
- outputs = model(**encoding)
19
-
20
- logits = outputs.logits
21
- idx = logits.argmax(-1).item()
22
- predicted_answer = model.config.id2label[idx]
23
-
24
- return predicted_answer
25
-
26
-
27
- image = gr.Image(type="pil")
28
- question = gr.Textbox(label="Question")
29
- answer = gr.Textbox(label="Predicted answer")
30
- examples = [["cats.jpg", "How many cats are there?"]]
31
-
32
- title = "Interactive Visual Question Answering demo (BigMed@ai: Artificial Intelligence for Large-Scale Medical Image Analysis)"
33
- description = "<div style='display: flex;align-items: center;justify-content: space-between;'><p style='width:60vw;'>Gradio Demo for VQA medical model trained on PathVQA dataset, To use it, upload your image and type a question and click 'submit', or click one of the examples to load them.</p><a href='https://github.com/dandelin/ViLT' target='_blank' class='link'><img src='file/GitHub.png' style='justify-self:margin-top:0.5em;center; width:calc(200px + 5vw);'></a></div>"
34
-
35
- ### link to paper and github code
36
- article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2102.03334' target='_blank'>BigMed@ai</a> | <a href='https://github.com/dandelin/ViLT' target='_blank'>Github Repo</a></p>"
37
-
38
- interface = gr.Interface(fn=answer_question,
39
- inputs=[image, question],
40
- outputs=answer,
41
- examples=examples,
42
- title=title,
43
- description=description,
44
- article=article,
45
- )
46
- interface.launch(debug=True, enable_queue=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cats.jpg DELETED
Binary file (173 kB)
 
flagged/image/tmp6px7agq4.jpg DELETED
Binary file (173 kB)
 
flagged/log.csv DELETED
@@ -1,2 +0,0 @@
1
- image,Question,Predicted answer,flag,username,timestamp
2
- D:\2023\BigMed_Demos\VQA_Demo\flagged\image\tmp6px7agq4.jpg,How many cats are there?,2,,,2022-12-26 01:49:33.791750