BigSalmon commited on
Commit
80ab8fe
·
1 Parent(s): fe2f37b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -31
app.py CHANGED
@@ -12,46 +12,20 @@ def get_model():
12
  #model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo1.3BPointsLincolnFormalInformal")
13
  #model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln")
14
  #model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln7")
15
- model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincolnConciseWordy")
 
16
  tokenizer = AutoTokenizer.from_pretrained("BigSalmon/Points2")
17
  return model, tokenizer
18
 
19
  model, tokenizer = get_model()
20
 
21
- st.text('''How To Make Prompt:
22
-
23
- ***
24
-
25
- Translated into the Style of Abraham Lincoln: at a time when nintendo has become inflexible, ( stubbornly bent on / firmly set on / unyielding in its insistence on / steadfastly transfixed by / uncompromising in its commitment to / rigidly decided on ) consoles that are tethered to a fixed iteration, sega diligently curates its legacy of classic video games on handheld devices.
26
- informal english: garage band has made people who know nothing about music good at creating music.
27
-
28
- ***
29
-
30
- Translated into the Style of Abraham Lincoln: garage band ( offers the uninitiated in music the ability to produce professional-quality compositions / catapults those for whom music is an uncharted art the ability the realize masterpieces / stimulates music novice's competency to yield sublime arrangements / begets individuals of rudimentary musical talent the proficiency to fashion elaborate suites ).
31
- informal english: chrome extensions can make doing regular tasks much easier to get done.
32
-
33
- ***
34
-
35
- Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.
36
- informal english:
37
-
38
- ***
39
-
40
- OR
41
-
42
- ***
43
- - declining viewership facing the nba.
44
- - does not have to be this way.
45
- - in fact, many solutions exist.
46
- - the four point line would surely draw in eyes.
47
- text: failing to draw in the masses, the nba has ( fallen into / succumb to / bowed to ) disrepair. such does not have to be the case, however. in fact, a myriad of simple, relatively cheap ( solutions / interventions / enhancements ) could revive the league. the addition of the much-hyped four-point line would surely juice viewership.
48
- ***
49
- - ''')
50
 
51
  temp = st.sidebar.slider("Temperature", 0.7, 1.5)
52
  number_of_outputs = st.sidebar.slider("Number of Outputs", 5, 50)
53
  lengths = st.sidebar.slider("Length", 3, 10)
54
  bad_words = st.text_input("Words You Do Not Want Generated", " core lemon height time ")
 
55
 
56
  def run_generate(text, bad_words):
57
  yo = []
@@ -95,6 +69,6 @@ with st.form(key='my_form'):
95
  logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
96
  logits = logits[0,-1]
97
  probabilities = torch.nn.functional.softmax(logits)
98
- best_logits, best_indices = logits.topk(100)
99
  best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
100
  st.write(best_words)
 
12
  #model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo1.3BPointsLincolnFormalInformal")
13
  #model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln")
14
  #model = AutoModelForCausalLM.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln7")
15
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincolnConciseWordy")
16
+ model = AutoModelForCausalLM.from_pretrained("BigSalmon/MediumInformalToFormalLincoln2")
17
  tokenizer = AutoTokenizer.from_pretrained("BigSalmon/Points2")
18
  return model, tokenizer
19
 
20
  model, tokenizer = get_model()
21
 
22
+ st.text('''For Prompt Templates: https://huggingface.co/BigSalmon/InformalToFormalLincoln35''')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  temp = st.sidebar.slider("Temperature", 0.7, 1.5)
25
  number_of_outputs = st.sidebar.slider("Number of Outputs", 5, 50)
26
  lengths = st.sidebar.slider("Length", 3, 10)
27
  bad_words = st.text_input("Words You Do Not Want Generated", " core lemon height time ")
28
+ logs_outputs = st.sidebar.slider("Logit Outputs", 50, 300)
29
 
30
  def run_generate(text, bad_words):
31
  yo = []
 
69
  logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
70
  logits = logits[0,-1]
71
  probabilities = torch.nn.functional.softmax(logits)
72
+ best_logits, best_indices = logits.topk(logs_outputs)
73
  best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
74
  st.write(best_words)