Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -31,6 +31,7 @@ def get_model():
|
|
31 |
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln63Paraphrase")
|
32 |
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln71Paraphrase")
|
33 |
model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln71Paraphrase")
|
|
|
34 |
model2 = AutoModelForCausalLM.from_pretrained("sberbank-ai/mGPT")
|
35 |
return model, model2, tokenizer
|
36 |
|
@@ -72,13 +73,13 @@ def run_generate(text, bad_words):
|
|
72 |
|
73 |
def run_generate2(text, bad_words):
|
74 |
yo = []
|
75 |
-
input_ids =
|
76 |
-
res = len(
|
77 |
bad_words = bad_words.split()
|
78 |
bad_word_ids = []
|
79 |
for bad_word in bad_words:
|
80 |
bad_word = " " + bad_word
|
81 |
-
ids =
|
82 |
bad_word_ids.append(ids)
|
83 |
sample_outputs = model2.generate(
|
84 |
input_ids,
|
@@ -91,7 +92,7 @@ def run_generate2(text, bad_words):
|
|
91 |
bad_words_ids=bad_word_ids
|
92 |
)
|
93 |
for i in range(number_of_outputs):
|
94 |
-
e =
|
95 |
e = e.replace(text, "")
|
96 |
yo.append(e)
|
97 |
return yo
|
@@ -126,12 +127,12 @@ with st.form(key='my_form'):
|
|
126 |
if submit_button4:
|
127 |
text2 = str(text)
|
128 |
print(text2)
|
129 |
-
text3 =
|
130 |
myinput, past_key_values = torch.tensor([text3]), None
|
131 |
myinput = myinput
|
132 |
logits, past_key_values = model2(myinput, past_key_values = past_key_values, return_dict=False)
|
133 |
logits = logits[0,-1]
|
134 |
probabilities = torch.nn.functional.softmax(logits)
|
135 |
best_logits, best_indices = logits.topk(logs_outputs)
|
136 |
-
best_words = [
|
137 |
st.write(best_words)
|
|
|
31 |
#model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln63Paraphrase")
|
32 |
tokenizer = AutoTokenizer.from_pretrained("BigSalmon/InformalToFormalLincoln71Paraphrase")
|
33 |
model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln71Paraphrase")
|
34 |
+
tokenizer2 = AutoTokenizer.from_pretrained("sberbank-ai/mGPT")
|
35 |
model2 = AutoModelForCausalLM.from_pretrained("sberbank-ai/mGPT")
|
36 |
return model, model2, tokenizer
|
37 |
|
|
|
73 |
|
74 |
def run_generate2(text, bad_words):
|
75 |
yo = []
|
76 |
+
input_ids = tokenizer2.encode(text, return_tensors='pt')
|
77 |
+
res = len(tokenizer2.encode(text))
|
78 |
bad_words = bad_words.split()
|
79 |
bad_word_ids = []
|
80 |
for bad_word in bad_words:
|
81 |
bad_word = " " + bad_word
|
82 |
+
ids = tokenizer2(bad_word).input_ids
|
83 |
bad_word_ids.append(ids)
|
84 |
sample_outputs = model2.generate(
|
85 |
input_ids,
|
|
|
92 |
bad_words_ids=bad_word_ids
|
93 |
)
|
94 |
for i in range(number_of_outputs):
|
95 |
+
e = tokenizer2.decode(sample_outputs[i])
|
96 |
e = e.replace(text, "")
|
97 |
yo.append(e)
|
98 |
return yo
|
|
|
127 |
if submit_button4:
|
128 |
text2 = str(text)
|
129 |
print(text2)
|
130 |
+
text3 = tokenizer2.encode(text2)
|
131 |
myinput, past_key_values = torch.tensor([text3]), None
|
132 |
myinput = myinput
|
133 |
logits, past_key_values = model2(myinput, past_key_values = past_key_values, return_dict=False)
|
134 |
logits = logits[0,-1]
|
135 |
probabilities = torch.nn.functional.softmax(logits)
|
136 |
best_logits, best_indices = logits.topk(logs_outputs)
|
137 |
+
best_words = [tokenizer2.decode([idx.item()]) for idx in best_indices]
|
138 |
st.write(best_words)
|