Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast | |
model_name = "ramsrigouthamg/t5_paraphraser" | |
model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_paraphraser') | |
tokenizer = T5Tokenizer.from_pretrained('ramsrigouthamg/t5_paraphraser') | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
def translate_to_english(model, tokenizer, text): | |
translated_text = [] | |
text = "paraphrase: " + text + " </s>" | |
encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt") | |
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device) | |
beam_outputs = model.generate( | |
input_ids=input_ids, attention_mask=attention_masks, | |
do_sample=True, | |
max_length=256, | |
top_k=120, | |
top_p=0.98, | |
early_stopping=True, | |
num_return_sequences=10 | |
) | |
for beam_output in beam_outputs: | |
sent = tokenizer.decode(beam_output, skip_special_tokens=True,clean_up_tokenization_spaces=True) | |
print(sent) | |
translated_text.append(sent) | |
return translated_text | |
st.title("Auto Translate (To English)") | |
text = st.text_input("Okay") | |
st.text("What you wrote: ") | |
st.write(text) | |
st.text("English Translation: ") | |
if text: | |
translated_text = translate_to_english(model, tokenizer, text) | |
st.write(translated_text if translated_text else "No translation found") |