BigSalmon commited on
Commit
93f58a5
·
1 Parent(s): 80805dc

Create new file

Browse files
Files changed (1) hide show
  1. app.py +76 -0
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ import pandas as pd
4
+ import os
5
+ import torch
6
+ import torch.nn as nn
7
+ from transformers.activations import get_activation
8
+ from transformers import AutoTokenizer, AutoModelWithLMHead, AutoModelForCausalLM
9
+
10
+ st.title('GPT2: To see all prompt outlines: https://huggingface.co/BigSalmon/InformalToFormalLincoln46')
11
+ #device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ number_of_outputs = st.sidebar.slider("Number of Outputs", 50, 350)
13
+
14
+ @st.cache(allow_output_mutation=True)
15
+ def get_model():
16
+ #model = #AutoModelWithLMHead.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln6")
17
+ #model = AutoModelWithLMHead.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln5")
18
+ #model = AutoModelWithLMHead.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln4")
19
+ #model = AutoModelWithLMHead.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln3")
20
+ #model = AutoModelWithLMHead.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln2")
21
+ #model = AutoModelWithLMHead.from_pretrained("BigSalmon/GPTNeo350MInformalToFormalLincoln")
22
+ #model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln24")
23
+ #model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln25")
24
+ #model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln26")
25
+ #model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln27")
26
+ #model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln28")
27
+ #model = AutoModelWithLMHead.from_pretrained("BigSalmon/InformalToFormalLincoln29")
28
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln30")
29
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln31")
30
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln32")
31
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln33")
32
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln34")
33
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln35")
34
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln39")
35
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln40")
36
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln44")
37
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/InformalToFormalLincoln46")
38
+ #model = AutoModelForCausalLM.from_pretrained("BigSalmon/Points4")
39
+ tokenizer = AutoTokenizer.from_pretrained("BigSalmon/TextbookInformalFormalEnglish")
40
+ model = AutoModelForCausalLM.from_pretrained("BigSalmon/TextbookInformalFormalEnglish")
41
+ return model, tokenizer
42
+
43
+ model, tokenizer = get_model()
44
+ g = """informal english: garage band has made people who know nothing about music good at creating music.
45
+ Translated into the Style of Abraham Lincoln: garage band ( offers the uninitiated in music the ability to produce professional-quality compositions / catapults those for whom music is an uncharted art the ability the realize masterpieces / stimulates music novice's competency to yield sublime arrangements / begets individuals of rudimentary musical talent the proficiency to fashion elaborate suites ).
46
+ informal english: chrome extensions can make doing regular tasks much easier to get done.
47
+ ***
48
+ Translated into the Style of Abraham Lincoln: chrome extensions ( yield the boon of time-saving convenience / ( expedite the ability to / unlock the means to more readily ) accomplish everyday tasks / turbocharges the velocity with which one can conduct their obligations ).
49
+ informal english: broadband is finally expanding to rural areas, a great development that will thrust them into modern life.
50
+ Translated into the Style of Abraham Lincoln: broadband is ( ( finally / at last / after years of delay ) arriving in remote locations / springing to life in far-flung outposts / inching into even the most backwater corners of the nation ) that will leap-frog them into the twenty-first century.
51
+ ***
52
+ informal english: google translate has made talking to people who do not share your language easier.
53
+ Translated into the Style of Abraham Lincoln: google translate ( imparts communicability to individuals whose native tongue differs / mitigates the trials of communication across linguistic barriers / hastens the bridging of semantic boundaries / mollifies the complexity of multilingual communication / avails itself to the internationalization of discussion / flexes its muscles to abet intercultural conversation / calms the tides of linguistic divergence ).
54
+ ***
55
+ informal english: corn fields are all across illinois, visible once you leave chicago.
56
+ Translated into the Style of Abraham Lincoln: corn fields ( permeate illinois / span the state of illinois / ( occupy / persist in ) all corners of illinois / line the horizon of illinois / envelop the landscape of illinois ), manifesting themselves visibly as one ventures beyond chicago.
57
+ ***
58
+ informal english: """
59
+ with st.form(key='my_form'):
60
+ prompt = st.text_area(label='Enter sentence', value=g)
61
+ submit_button = st.form_submit_button(label='Submit')
62
+ if submit_button:
63
+ with torch.no_grad():
64
+ text = tokenizer.encode(prompt)
65
+ myinput, past_key_values = torch.tensor([text]), None
66
+ myinput = myinput
67
+ #myinput= myinput
68
+ logits, past_key_values = model(myinput, past_key_values = past_key_values, return_dict=False)
69
+ logits = logits[0,-1]
70
+ probabilities = torch.nn.functional.softmax(logits)
71
+ best_logits, best_indices = logits.topk(number_of_outputs)
72
+ best_words = [tokenizer.decode([idx.item()]) for idx in best_indices]
73
+ text.append(best_indices[0].item())
74
+ best_probabilities = probabilities[best_indices].tolist()
75
+ words = []
76
+ st.write(best_words)