BigTimeCoderSean commited on
Commit
efc2ac4
·
1 Parent(s): cdb8251

initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ pretrained_effnetb2_feature_extractor.pth filter=lfs diff=lfs merge=lfs -text
__pycache__/model.cpython-38.pyc ADDED
Binary file (749 Bytes). View file
 
app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+
6
+ from model import create_effnet_b2
7
+ from timeit import default_timer as timer
8
+ from typing import Tuple, Dict
9
+
10
+ #setup class names
11
+ class_names = ['pizza', 'steak', 'sushi']
12
+
13
+ #model and transforms preparation
14
+ effnetb2, effnetb2_transforms = create_effnet_b2(
15
+ num_classes = 3)
16
+
17
+ #load saved weights
18
+ effnetb2.load_state_dict(
19
+ torch.load(f = 'pretrained_effnetb2_feature_extractor.pth',
20
+ map_location = torch.device('cpu')) #hardcoding to load state dict onto the cpu
21
+ )
22
+
23
+ #Predict function
24
+
25
+ def predict(img) -> Tuple[Dict, float]:
26
+
27
+ #Start a timer
28
+ start_time = timer()
29
+
30
+ #transform the input image for use with effnetb2
31
+ transformed_image = effnetb2_transforms(img).unsqueeze(0)
32
+
33
+ #put model into deval mode, make preiction
34
+ effnetb2.eval()
35
+ with torch.inference_mode():
36
+ pred_logits = effnetb2(transformed_image)
37
+ pred_probs = torch.softmax(pred_logits, dim = 1)
38
+
39
+ # create a prediction label and pred prob dictionary
40
+ pred_labels_and_probs = {effnet_class_names[i]: float(pred_probs[0][i])
41
+ for i in range(len(effnet_class_names))}
42
+
43
+ #calculate pred time
44
+ end_time = timer()
45
+ pred_time = end_time - start_time
46
+
47
+ #return pred dict and pred time
48
+ print(pred_probs[0])
49
+ return pred_labels_and_probs, pred_time
50
+
51
+
52
+ # Gradio app
53
+
54
+ import gradio as gr
55
+
56
+ #Create title, description and article
57
+ title = 'FoodVision Mini'
58
+ description = 'An EfficientNetB2 feature extractor to classify food as pizza, steak, and sushi'
59
+
60
+ #Create example list
61
+ example_list = [['examples/' + example] for example in os.listdir('examples')]
62
+
63
+
64
+ demo = gr.Interface(fn = predict,
65
+ inputs = gr.Image(type='pil'),
66
+ outputs = [gr.Label(num_top_classes = 3, label = 'Predictions'),
67
+ gr.Number(label = 'Prediction time (s)')],
68
+
69
+ examples = example_list,
70
+ title = title,
71
+ description = description)
72
+
73
+ demo.launch(debug = False,
74
+ share = True)
75
+
76
+
77
+
examples/1032754.jpg ADDED
examples/1082384.jpg ADDED
examples/1346344.jpg ADDED
foodvision_mini/.DS_Store ADDED
Binary file (6.15 kB). View file
 
foodvision_mini/__pycache__/model.cpython-38.pyc ADDED
Binary file (749 Bytes). View file
 
foodvision_mini/app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+
6
+ from model import create_effnet_b2
7
+ from timeit import default_timer as timer
8
+ from typing import Tuple, Dict
9
+
10
+ #setup class names
11
+ class_names = ['pizza', 'steak', 'sushi']
12
+
13
+ #model and transforms preparation
14
+ effnetb2, effnetb2_transforms = create_effnet_b2(
15
+ num_classes = 3)
16
+
17
+ #load saved weights
18
+ effnetb2.load_state_dict(
19
+ torch.load(f = 'pretrained_effnetb2_feature_extractor.pth',
20
+ map_location = torch.device('cpu')) #hardcoding to load state dict onto the cpu
21
+ )
22
+
23
+ #Predict function
24
+
25
+ def predict(img) -> Tuple[Dict, float]:
26
+
27
+ #Start a timer
28
+ start_time = timer()
29
+
30
+ #transform the input image for use with effnetb2
31
+ transformed_image = effnetb2_transforms(img).unsqueeze(0)
32
+
33
+ #put model into deval mode, make preiction
34
+ effnetb2.eval()
35
+ with torch.inference_mode():
36
+ pred_logits = effnetb2(transformed_image)
37
+ pred_probs = torch.softmax(pred_logits, dim = 1)
38
+
39
+ # create a prediction label and pred prob dictionary
40
+ pred_labels_and_probs = {effnet_class_names[i]: float(pred_probs[0][i])
41
+ for i in range(len(effnet_class_names))}
42
+
43
+ #calculate pred time
44
+ end_time = timer()
45
+ pred_time = end_time - start_time
46
+
47
+ #return pred dict and pred time
48
+ print(pred_probs[0])
49
+ return pred_labels_and_probs, pred_time
50
+
51
+
52
+ # Gradio app
53
+
54
+ import gradio as gr
55
+
56
+ #Create title, description and article
57
+ title = 'FoodVision Mini'
58
+ description = 'An EfficientNetB2 feature extractor to classify food as pizza, steak, and sushi'
59
+
60
+ #Create example list
61
+ example_list = [['examples/' + example] for example in os.listdir('examples')]
62
+
63
+
64
+ demo = gr.Interface(fn = predict,
65
+ inputs = gr.Image(type='pil'),
66
+ outputs = [gr.Label(num_top_classes = 3, label = 'Predictions'),
67
+ gr.Number(label = 'Prediction time (s)')],
68
+
69
+ examples = example_list,
70
+ title = title,
71
+ description = description)
72
+
73
+ demo.launch(debug = False,
74
+ share = True)
75
+
76
+
77
+
foodvision_mini/examples/1032754.jpg ADDED
foodvision_mini/examples/1082384.jpg ADDED
foodvision_mini/examples/1346344.jpg ADDED
foodvision_mini/model.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torchvision
4
+ from torch import nn
5
+
6
+ #Function that creates an effnetb2
7
+
8
+ def create_effnet_b2(num_classes: int = 3,
9
+ seed: int = 42):
10
+
11
+ #Get weights
12
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
13
+ transforms = weights.transforms()
14
+ model = torchvision.models.efficientnet_b2(weights = weights)
15
+
16
+
17
+ #Freeze parameters in features layer
18
+ for param in model.parameters():
19
+ param.requires_grad = False
20
+
21
+ #Change classification layer
22
+ torch.manual_seed(seed)
23
+ model.classifier = nn.Sequential(
24
+ nn.Dropout(p = .3),
25
+ nn.Linear(in_features = 1408,
26
+ out_features = num_classes))
27
+
28
+ return model, transforms
29
+
foodvision_mini/pretrained_effnetb2_feature_extractor.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4ab6ca54bf0bb2d03b2ef7a1487be135c47da838aba93d2bfd0df9c41d1632f
3
+ size 31282061
foodvision_mini/requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch == 1.12.0
2
+ torchvision == .13.0
3
+ gradio ==3.1.4
4
+
5
+
6
+
model.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torchvision
4
+ from torch import nn
5
+
6
+ #Function that creates an effnetb2
7
+
8
+ def create_effnet_b2(num_classes: int = 3,
9
+ seed: int = 42):
10
+
11
+ #Get weights
12
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
13
+ transforms = weights.transforms()
14
+ model = torchvision.models.efficientnet_b2(weights = weights)
15
+
16
+
17
+ #Freeze parameters in features layer
18
+ for param in model.parameters():
19
+ param.requires_grad = False
20
+
21
+ #Change classification layer
22
+ torch.manual_seed(seed)
23
+ model.classifier = nn.Sequential(
24
+ nn.Dropout(p = .3),
25
+ nn.Linear(in_features = 1408,
26
+ out_features = num_classes))
27
+
28
+ return model, transforms
29
+
pretrained_effnetb2_feature_extractor.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4ab6ca54bf0bb2d03b2ef7a1487be135c47da838aba93d2bfd0df9c41d1632f
3
+ size 31282061
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch == 1.12.0
2
+ torchvision == .13.0
3
+ gradio ==3.1.4
4
+
5
+
6
+