import torch import torchvision from torch import nn #Function that creates an effnetb2 def create_effnet_b2(num_classes: int = 3, seed: int = 42): #Get weights weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT transforms = weights.transforms() model = torchvision.models.efficientnet_b2(weights = weights) #Freeze parameters in features layer for param in model.parameters(): param.requires_grad = False #Change classification layer torch.manual_seed(seed) model.classifier = nn.Sequential( nn.Dropout(p = .3), nn.Linear(in_features = 1408, out_features = num_classes)) return model, transforms