Quizziz / app.py
BillBojangeles2000's picture
Update app.py
439c96b
raw
history blame
5.14 kB
import random
import spacy
import requests
from bs4 import BeautifulSoup
import re
import spacy
import language_tool_python
import streamlit as st
from gradio_client import client
# Initialize LanguageTool
tool = language_tool_python.LanguageToolPublicAPI('en-US')
# Helper function to check grammar and sense
def grammar_sense(sentence):
sense = tool.correct(sentence)
grammar = "Correct Grammar" if not tool.check(sentence) else "Incorrect Grammar"
return "Make Sense" if "Not" not in sense and grammar == "Correct Grammar" else "Not Make Sense"
# Web scraping and text cleaning
Quiz_Gen = st.form("Quiz Generation")
res = Quiz_Gen.text_input("What topic do you want to get quizzed on?")
Quiz_Gen.form_submit_button("Submit")
entity = res
prefix = "https://wiki.kidzsearch.com/wiki/"
page = requests.get(f'{prefix}{entity}')
res = BeautifulSoup(page.content, 'html.parser')
text = [i.get_text() for i in res.find_all('p')]
cleaned_text = ' '.join(text)
cleaned_text = re.sub(r'[^a-zA-Z0-9.,]', ' ', cleaned_text)
paragraphs = [p.strip() for p in re.split(r'\n', cleaned_text) if p.strip()]
# Process text using SpaCy
nlp = spacy.load("en_core_web_sm")
doc = nlp(cleaned_text)
sentences = [sent.text for sent in doc.sents]
# Combine sentences into paragraphs
paragraphs = [f"{sentences[i]} {sentences[i + 1]}" if i + 1 < len(sentences) else sentences[i] for i in range(0, len(sentences), 2)]
class SubjectiveTest:
def __init__(self, data, noOfQues):
self.summary = data
self.noOfQues = noOfQues
self.nlp = spacy.load("en_core_web_sm")
def adjust_question_pattern(self, entity_label, topic_placeholder=True):
question_patterns = {
"PERSON": ["Who is {entity}?", "Tell me about {entity}", "Explain {entity}", "What do you know about {entity}"],
"ORG": ["What is {entity}?", "Tell me about {entity}", "Explain {entity}", "What do you know about {entity}"],
"GPE": ["Tell me about {entity}", "Explain {entity}", "What do you know about {entity}", "Describe {entity}", "Where is {entity}"],
"MONEY": ["How much is {entity}?", "Tell me the value of {entity}", "Explain the amount of {entity}"],
"DATE": ["Why was {entity} important?", "Explain what happened on {entity}"],
# Add more entity-label to question-pattern mappings as needed
}
if topic_placeholder:
for key in question_patterns:
question_patterns[key] = [pattern + " {topic}" for pattern in question_patterns[key]]
return question_patterns.get(entity_label, ["Explain {entity} {topic}"])
def generate_test(self, topic=None):
doc = self.nlp(self.summary)
question_answer_dict = dict()
for sentence in doc.sents:
for ent in sentence.ents:
entity_label = ent.label_
entity_text = ent.text
question_patterns = self.adjust_question_pattern(entity_label, topic is not None)
for pattern in question_patterns:
question = pattern.format(entity=entity_text, topic=topic)
if entity_label in question_answer_dict:
question_answer_dict[entity_label].append(question)
else:
question_answer_dict[entity_label] = [question]
questions = []
for entity_label, entity_questions in question_answer_dict.items():
entity_questions = entity_questions[:self.noOfQues]
questions.extend(entity_questions)
return questions
# Example usage
data = ' '.join(paragraphs)
noOfQues = 5
subjective_generator = SubjectiveTest(data, noOfQues)
question_list = subjective_generator.generate_test("")
questions = []
Quiz = st.form("Quiz")
for i, question in enumerate(question_list):
if "Explain" not in question and len(tool.check(question)) == 0 and grammar_sense(question) == "Make Sense":
questions.append(f"Question: {question}")
scores = []
client = Client("https://billbojangeles2000-zephyr-7b-alpha-chatbot-karki.hf.space/")
for i in questions:
res = Quiz.text_input(i)
result = client.predict(
f'What would you rate this answer to the question :"{i}" as a percentage? Here is the answer: {res}. Make sure to write your answer as "Score" and then write your score of the response.', # Fixed formatting issue
0.9,
256,
0.9,
1.2,
api_name="/chat"
)
print(result)
pattern = r'(\d+)%'
match = re.search(pattern, result)
if match:
score = match.group(1)
scores.append(f'{int(score)}')
else:
scores.append(f'N/A')
Quiz_Gen.form_submit_button("Submit")
x = 0
new_scores = []
for i in scores:
if i == 'N/A':
scores.pop(x)
scores.append(85)
x = x+1
else:
x = x+1
def calculate_average(numbers):
if not numbers:
return 0 # Return 0 for an empty list to avoid division by zero.
total = sum(numbers)
average = total / len(numbers)
return average
st.write(f'Your average score is {calculate_average(scores)}')