File size: 3,302 Bytes
4ac91c8
b9b537e
644a42c
423c9eb
 
 
9aa4f76
1e4c337
 
 
 
 
 
 
 
 
 
 
 
 
 
4ac91c8
1e4c337
 
 
 
 
 
423c9eb
 
dde4cd7
1e4c337
500644b
 
 
 
 
 
 
 
1e4c337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423c9eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e4c337
 
 
 
079509f
1e4c337
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import pinecone
from pprint import pprint
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModel, AutoModelForSeq2SeqLM
model_name = "vblagoje/bart_lfqa"
# connect to pinecone environment
pinecone.init(
    api_key="e5d4972e-0045-43d5-a55e-efdeafe442dd",
    environment="us-central1-gcp"  # find next to API key in console
)

index_name = "abstractive-question-answering"

# check if the abstractive-question-answering index exists
if index_name not in pinecone.list_indexes():
    # create the index if it does not exist
    pinecone.create_index(
        index_name,
        dimension=768,
        metric="cosine"
    )

# connect to abstractive-question-answering index we created
index = pinecone.Index(index_name)

from transformers import BartTokenizer, BartForConditionalGeneration

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
model = model.to('cpu')

import torch
from sentence_transformers import SentenceTransformer

# set device to GPU if available
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# load the retriever model from huggingface model hub
retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base", device=device)

def query_pinecone(query, top_k):
    # generate embeddings for the query
    xq = retriever.encode([query]).tolist()
    # search pinecone index for context passage with the answer
    xc = index.query(xq, top_k=top_k, include_metadata=True)
    return xc

def format_query(query, context):
    # extract passage_text from Pinecone search result and add the <P> tag
    context = [f"<P> {m['metadata']['text']}" for m in context]
    # concatinate all context passages
    context = " ".join(context)
    # contcatinate the query and context passages
    query = f"question: {query} context: {context}"
    return query
def generate_answer(query):
    query_and_docs = query

    model_input = tokenizer(query_and_docs, truncation=True, padding=True, return_tensors="pt")

    generated_answers_encoded = model.generate(input_ids=model_input["input_ids"].to(device),
                                           attention_mask=model_input["attention_mask"].to(device),
                                           min_length=64,
                                           max_length=256,
                                           do_sample=False, 
                                           early_stopping=True,
                                           num_beams=8,
                                           temperature=1.0,
                                           top_k=None,
                                           top_p=None,
                                           eos_token_id=tokenizer.eos_token_id,
                                           no_repeat_ngram_size=3,
                                           num_return_sequences=1)
    res = tokenizer.batch_decode(generated_answers_encoded, skip_special_tokens=True,clean_up_tokenization_spaces=True)
    st.write(str(res))

query = st.text_area('Enter Question:')
b = st.button('Submit!')
if b:
    st.write("Processing, please wait!")
    context = query_pinecone(query, top_k=5)
    query = format_query(query, context["matches"])
    generate_answer(query)