Bils's picture
Update app.py
4d9e689 verified
raw
history blame
9 kB
import gradio as gr
import os
import tempfile
import torch
import numpy as np
from scipy.io.wavfile import write
from dotenv import load_dotenv
from diffusers import DiffusionPipeline
from transformers import pipeline
from PIL import Image
import io
from pydub import AudioSegment
from typing import List
from huggingface_hub import spaces
# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HF_TKN")
# Device configuration
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize models
@gr.cache()
def load_caption_model():
return pipeline(
"image-to-text",
model="Salesforce/blip-image-captioning-base",
device=device
)
@gr.cache()
def load_audio_model():
pipe = DiffusionPipeline.from_pretrained(
"cvssp/audioldm2",
use_auth_token=HF_TOKEN
)
return pipe
caption_pipe = load_caption_model()
audio_pipe = load_audio_model().to(device)
@spaces.GPU(duration=120)
def analyze_image(image_file):
"""Generate caption from image with validation"""
try:
# Validate image
try:
image = Image.open(io.BytesIO(image_file))
image.verify()
image = Image.open(io.BytesIO(image_file))
except Exception as e:
raise ValueError(f"Invalid image file: {str(e)}")
results = caption_pipe(image)
if not results or not isinstance(results, list):
raise RuntimeError("No caption generated")
caption = results[0].get("generated_text", "").strip()
if not caption:
raise RuntimeError("Empty caption generated")
return caption
except Exception as e:
raise gr.Error(f"Image processing error: {str(e)}")
@spaces.GPU(duration=120)
def generate_audio(prompt: str, num_steps=100, guidance_scale=7.5):
"""Generate audio from single prompt"""
try:
if not prompt or len(prompt) < 10:
raise ValueError("Prompt must be at least 10 characters")
with torch.inference_mode():
audio = audio_pipe(
prompt=prompt,
num_inference_steps=int(num_steps),
guidance_scale=guidance_scale,
audio_length_in_s=10
).audios[0]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
write(tmpfile.name, 16000, audio)
return tmpfile.name
except Exception as e:
raise gr.Error(f"Audio generation error: {str(e)}")
@spaces.GPU(duration=120)
def blend_audios(audio_files: List[str]) -> str:
"""Mix multiple audio files into one"""
try:
if not audio_files:
raise ValueError("No audio files to blend")
# Load first audio to get base parameters
base_audio = AudioSegment.from_wav(audio_files[0])
mixed = base_audio
# Mix subsequent tracks
for file in audio_files[1:]:
track = AudioSegment.from_wav(file)
if len(track) > len(mixed):
mixed = mixed.overlay(track[:len(mixed)])
else:
mixed = mixed.overlay(track)
# Export mixed audio
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
mixed.export(tmpfile.name, format="wav")
return tmpfile.name
except Exception as e:
raise gr.Error(f"Audio mixing error: {str(e)}")
def process_inputs(input_choice, image_file, *prompts):
"""Handle both image and text input modes"""
try:
# Filter empty prompts
valid_prompts = [p.strip() for p in prompts if p.strip()]
if input_choice == "Image":
if not image_file:
raise gr.Error("Please upload an image")
main_prompt = analyze_image(image_file)
valid_prompts = [main_prompt] + valid_prompts
else:
if not valid_prompts:
raise gr.Error("Please enter at least one text prompt")
# Generate audio for each prompt
audio_files = []
for idx, prompt in enumerate(valid_prompts):
audio_path = generate_audio(prompt)
audio_files.append(audio_path)
# Blend all audio files
final_audio = blend_audios(audio_files)
return valid_prompts, final_audio, audio_files
except Exception as e:
raise gr.Error(str(e))
# Gradio interface
css = """
#main-container { max-width: 800px; margin: 0 auto; }
.dark { background: #1a1a1a; }
.prompt-box { margin-bottom: 10px; }
.audio-track { margin: 5px 0; }
"""
with gr.Blocks(css=css, theme=gr.themes.Default(primary_hue="emerald")) as app:
with gr.Column(elem_id="main-container"):
gr.Markdown("""
# 🎨 Image to Sound Generator
Transform visual content or text prompts into mixed sound effects!
""")
# Input Mode Selector
input_choice = gr.Radio(
choices=["Image", "Text"],
value="Image",
label="Input Mode",
interactive=True
)
# Image Input Section
with gr.Row(visible=True) as image_row:
image_input = gr.Image(type="filepath", label="Upload Image")
# Text Input Section
with gr.Column(visible=False) as text_inputs_col:
prompt_components = [gr.Textbox(label=f"Sound Effect {i+1}", lines=2) for i in range(3)]
add_prompt_btn = gr.Button("Add Another Prompt", variant="secondary")
# Dynamic prompt management
current_prompts = gr.State(value=3)
def add_prompt(current_count):
new_count = current_count + 1
new_prompt = gr.Textbox(label=f"Sound Effect {new_count}", lines=2, visible=True)
return [new_count] + [new_prompt] + [gr.update(visible=True)]*(new_count)
add_prompt_btn.click(
fn=add_prompt,
inputs=current_prompts,
outputs=[current_prompts] + prompt_components + [text_inputs_col]
)
# Toggle between image/text inputs
def toggle_inputs(choice):
if choice == "Image":
return [gr.update(visible=True), gr.update(visible=False)]
return [gr.update(visible=False), gr.update(visible=True)]
input_choice.change(
fn=toggle_inputs,
inputs=input_choice,
outputs=[image_row, text_inputs_col]
)
# Generation Controls
with gr.Accordion("Advanced Settings", open=False):
steps_slider = gr.Slider(10, 200, 100, label="Generation Steps")
guidance_slider = gr.Slider(1.0, 15.0, 7.5, label="Guidance Scale")
generate_btn = gr.Button("Generate Mixed Sound", variant="primary")
# Outputs
with gr.Column():
gr.Markdown("### Generation Results")
prompt_display = gr.JSON(label="Used Prompts")
final_audio = gr.Audio(label="Blended Sound Effect", interactive=False)
with gr.Accordion("Individual Tracks", open=False):
track_components = [gr.Audio(visible=False) for _ in range(5)]
# Examples
gr.Examples(
examples=[
["examples/storm.jpg", "A dramatic thunderstorm", "Heavy rain pouring", "Distant rumble"],
[None, "Clock ticking", "Crowd murmuring", "Footsteps on concrete"]
],
inputs=[image_input] + prompt_components[:2],
outputs=[prompt_display, final_audio],
fn=lambda *x: process_inputs("Image", *x),
cache_examples=True
)
# Contribution Section
with gr.Column():
gr.Markdown("""
## 👥 How You Can Contribute
We welcome contributions! Contact us at [[email protected]](mailto:[email protected]).
Support us on [Ko-fi](https://ko-fi.com/bilsimaging). - Bilel Aroua
""")
gr.HTML("""
<div style="text-align: center;">
<a href="https://visitorbadge.io/status?path=https://huggingface.co/spaces/Bils/Generate-Sound-Effects-from-Image">
<img src="https://api.visitorbadge.io/api/visitors?path=https://huggingface.co/spaces/Bils/Generate-Sound-Effects-from-Image&countColor=%23263759" />
</a>
</div>
""")
# Footer
gr.Markdown("""
---
[GitHub Repository](https://github.com/bilsimaging/Imaginesound)*
""")
# Event handling
generate_btn.click(
fn=process_inputs,
inputs=[input_choice, image_input] + prompt_components,
outputs=[prompt_display, final_audio, *track_components]
)
if __name__ == "__main__":
app.launch(debug=True, share=True)